Skip to content

Contains material for Deep Into CNN project

Notifications You must be signed in to change notification settings

vyjayanthi22/Deep-Into-CNN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Deep Into CNN

Contains material relevant to "Deep Into CNN" Project.

Resources

Week 1 : Regression( Skip if you are confident )

Readings

  1. Local Setup (Use Conda : recommended)
    https://jupyter.readthedocs.io/en/latest/install/notebook-classic.html
    https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html#installation
  2. (Optional: Basic Python and libraries)
    https://duchesnay.github.io/pystatsml/index.html#scientific-python
  3. ( Optional : For those with very basic ml knowledge: Only 2.1-2.7)
    https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN
  4. Linear Regression:
    https://medium.com/analytics-vidhya/simple-linear-regression-with-example-using-numpy-e7b984f0d15e
  5. Logistic Regression:
    https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc

Practice Material

Find in NeuralNetIntro : W2-3.

Week 1-2: Neural Networks

Readings

  1. This one is highly recommended:
    https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
    Some more material (bit extensive, so be careful):
    https://youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI
  2. Basic Backprop:
    https://ml-cheatsheet.readthedocs.io/en/latest/backpropagation.html
  3. Backprop (Mathematical Version):
    https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
  4. Softmax:
    https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/
  5. Pytorch(Skip the CNN part if you want for now):
    https://pytorch.org/tutorials/beginner/basics/intro.html
  6. Optional guide:
    http://neuralnetworksanddeeplearning.com/chap1.html
  7. Pytorch Autograd:
    https://www.youtube.com/watch?v=MswxJw-8PvE&list=PL-bzqKhHrboYIKgBwoqzl6-eyCHP3aBYs&index=4

Practice Material

Find in PyTorch : W2-3.

Hackathon 1

June 1 - June 30 :
https://www.kaggle.com/c/tabular-playground-series-jun-2021

Week 2-3: Convolutional Neural Networks

Readings

  1. These will give you a good Intuition:
    https://www.youtube.com/watch?v=py5byOOHZM8
    and
    https://www.youtube.com/watch?v=BFdMrDOx_CM
    Also, do check this blog out:
    https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
  2. Highly Recommended:
    https://cs231n.github.io/convolutional-networks/
  3. (L2-L11 : Enough for Understanding Implementation Details):
    https://www.youtube.com/playlist?list=PLkDaE6sCZn6Gl29AoE31iwdVwSG-KnDzF
  4. Pytorch official guide (Try after doing W3 exercises):
    https://pytorch.org/tutorials/beginner/basics/intro.html

Practice Material

Find in W3 Folder

About

Contains material for Deep Into CNN project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.5%
  • Python 1.5%