Skip to content

This repository contains the code to an exploratory project created under our semester course Computation Intelligence.

License

Notifications You must be signed in to change notification settings

vihaanthora/trading-using-ml-ci

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

trading-using-ml-ci

This repository contains the code for an exploratory project created under our semester course Computation Intelligence. It is based on creating a trading strategy using scikit-learn classifiers that are trained to predict whether the price of a stock (or derivative) goes up or down based on the current trend in the market.

How To Run

The dependencies can be installed using the requirements file by running

pip install -r requirements.txt

You can then run the cells in src/example.ipynb and view the outputs corresponding to some sample parameters. The default dataset is the 22 years of NIFTY data that is split into 18 years to train and 4 years to test the model. The parameters in the returns function correspond to the coefficients associated with the trading function. The heart of this strategy determines a confidence value that combines with the prediction of our model to trade a volume of shares. This is done to ensure that the drawdown is minimized and the Sharpe ratio is as high as possible.

Documentation

You can refer to the reports/presentations that we submitted for the project evaluation to learn more about the theory that goes behind the project.

Contributors

About

This repository contains the code to an exploratory project created under our semester course Computation Intelligence.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published