Fast and simple transform stream for excel file parsing
npm i excel-row-stream
Here is an example:
import { createReadStream } from "fs";
import { Writable } from "stream";
import { pipeline } from "stream/promises";
import createExcelWorkbookStream, { Row } from "excel-row-stream";
const fileStream = createReadStream("./some.xlsx");
const workbookStream = createExcelWorkbookStream({
matchSheet: /sheet name/i,
dropEmptyRows: true,
});
const resultStream = new Writable({
objectMode: true,
write(row: Row, _encoding, callback) {
console.log(row.index, row.values);
callback();
},
});
await pipeline(fileStream, workbookStream, resultStream);
console.log("Done!");
The workbookStream
will only return rows from matched sheets.
- matchSheet (required) - RegExp, to match the sheet name
- dropEmptyRows (optional) - Boolean, to drop empty rows, by default parser will emit all rows
- dropEmptyCells (optional) - Boolean, to drop empty cells on the right side of the row
- alwaysAddSecondsToCustomTimeFormat (optional) - Boolean, always provide seconds for custom time format. Handles the common scenario where dates are formatted to display in
hh:mm
format (without seconds) in excel but the underlying data has more resolution. Defaults totrue
, because this library is intended for data analysis, not replicating what the user saw in Excel. Also because this is what pandas would do. This is only applied to when the time field has a format type of CUSTOM . Which is what Excel automatically applies when it infers a field is a time field.
All row.values
have unknown
type. Please always validate your data. For example, you can do it with the excellent io-ts library.
This library provides several streams to make your life easier
Creates a stream that converts rows with values into objects with column names. The column names come from the first row (index = 1).
Options: – sanitizeColumnName optional function to transform column names.
const fileStream = createReadStream("file.xlsx");
const parserStream = createExcelParserStream({
matchSheet: /.*/,
dropEmptyRows: true,
});
const withColumnsStream = createRowToRowWithColumnsStream({
sanitizeColumnName: (columnName) =>
columnName.toLowerCase().replace(/\W/g, "_"),
});
const resultStream = new Writable({
objectMode: true,
write(row: RowWithColumns, _encoding, callback) {
console.log(row.index, row.columns);
callback();
},
});
await pipeline(fileStream, parserStream, withColumnsStream, resultStream);
Creates a stream that strips the index
from rows and returns the data directly, either values
or columns
.
const fileStream = createReadStream("file.xlsx");
const parserStream = createExcelParserStream({
matchSheet: /.*/,
dropEmptyRows: true,
});
const asObjectsStream = createRowToRowAsObjectStream();
const resultStream = new Writable({
objectMode: true,
write(row: unknown[], _encoding, callback) {
console.log("values", row);
callback();
},
});
await pipeline(fileStream, parserStream, asObjectsStream, resultStream);
Creates a stream that checks if no data flows through it and throws an error with message
.
const fileStream = createReadStream("file.xlsx");
const parserStream = createExcelParserStream({
matchSheet: /.*/,
dropEmptyRows: true,
});
const filterStream = new Transform({
objectMode: true,
transform(row: RowWithValues, _encoding, callback) {
// skip all the data
callback();
},
});
const throwIfEmpty = createThrowIfEmptyStream({
message: "Can not believe it",
});
// will throw
await pipeline(fileStream, parserStream, filterStream, throwIfEmpty);
License