2. Medical: capturing high-resolution MRI images can be tricky when it comes to scan time, spatial coverage, and signal-to-noise ratio (SNR). Super resolution helps resolve this by generating high-resolution MRI from otherwise low-resolution MRI images.
3. Media: super resolution can be used to reduce server costs, as media can be sent at a lower resolution and upscaled on the fly.
- Image Super-Resolution Using Deep Convolutional Networks Chao Dong, Chen Change Loy, Member, IEEE, Kaiming He, Member, IEEE, and Xiaoou Tang, Fellow, IEEE
- Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang
- https://github.com/SaoYan/DnCNN-PyTorch
- https://github.com/tegg89/SRCNN-Tensorflow
- Checkerboard artifact free sub-pixel convolution A note on sub-pixel convolution, resize convolution and convolution resize Andrew Aitken*, Christian Ledig*, Lucas Theis*, Jose Caballero, Zehan Wang, Wenzhe Shi* Twitter, Inc.
- Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network Wenzhe Shi1 , Jose Caballero1 , Ferenc Huszar´ 1 , Johannes Totz1 , Andrew P. Aitken1 , Rob Bishop1 , Daniel Rueckert1 , Zehan Wang1 (Twitter)
- Generative Adversarial Nets Ian J. Goodfellow, Jean Pouget-Abadie∗ , Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair† , Aaron Courville, Yoshua Bengio‡ Departement d’informatique et de recherche op ´ erationnelle ´ Universite de Montr ´ eal ´ Montreal, QC H3C 3J7