This repository has been archived by the owner on Mar 13, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Preclinical and supplementary figures
- Loading branch information
1 parent
1ec621b
commit 683dad1
Showing
116 changed files
with
8,761,086 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,314 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Organize samples\n", | ||
"We leverage the sample tables from CCLE, Sanger, and DepMap to make sure we have a consistent set of samples to work with. We export a file that contains names of cell lines based on the Broad, CCLE, and Sanger (`formatted/cell-lines-names.raw.txt`) and then manually checked it (`formatted/cell-lines-names.formatted.txt`). " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"\n", | ||
"gdsc_model_info = pd.read_csv('source/gdsc/model_list_20200204.csv')\n", | ||
"ccle_model_info = pd.read_csv('source/ccle-2019/data_clinical_sample.txt', sep='\\t', comment='#')\n", | ||
"\n", | ||
"fibroblast_maps = (pd.\n", | ||
" read_excel('source/ccle-2019/41586_2019_1186_MOESM4_ESM.xlsx', \n", | ||
" sheet_name='Cell line name changes')\n", | ||
" .iloc[:45, :]\n", | ||
" .set_index('old_CCLE_ID')\n", | ||
" .loc[:, 'new_CCLE_ID'])\n", | ||
"\n", | ||
"gdsc_to_ccle = gdsc_model_info.loc[:, ['model_id', 'CCLE_ID']].dropna()\n", | ||
"gdsc_to_ccle['CCLE_ID'].replace(fibroblast_maps, inplace=True)\n", | ||
"gdsc_to_ccle = gdsc_to_ccle.set_index('model_id')['CCLE_ID']\n", | ||
"\n", | ||
"depmap = pd.read_csv('source/depmap/sample_info.csv')\n", | ||
"depmap['CCLE_Name'].replace(fibroblast_maps, inplace=True)\n", | ||
"depmap_maps = depmap.loc[:, ['CCLE_Name', 'Sanger_Model_ID']].dropna()\n", | ||
"depmap_maps = depmap_maps[~depmap_maps['Sanger_Model_ID'].isin(gdsc_to_ccle.to_frame().reset_index()['model_id'])].set_index('Sanger_Model_ID')['CCLE_Name']\n", | ||
"gdsc_to_ccle = pd.concat([gdsc_to_ccle, depmap_maps])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Generate unique samples" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ccle_unique = ccle_model_info['SAMPLE_ID'].replace(fibroblast_maps).drop_duplicates().sort_values()\n", | ||
"gdsc_unique = gdsc_model_info['model_id'].drop_duplicates().sort_values()\n", | ||
"broad_unique = depmap['DepMap_ID'].drop_duplicates().sort_values()\n", | ||
"other_broad = ccle_model_info['DEPMAPID'].dropna()[~ccle_model_info['DEPMAPID'].dropna().isin(broad_unique)]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Concat by sample name type" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"all_broad = pd.concat([\n", | ||
" depmap['DepMap_ID'],\n", | ||
" ccle_model_info['DEPMAPID'],\n", | ||
" gdsc_model_info['BROAD_ID']\n", | ||
"]).dropna().drop_duplicates().sort_values().reset_index(drop=True)\n", | ||
"\n", | ||
"all_broad = all_broad[all_broad.str.len().eq(10)].reset_index(drop=True)\n", | ||
"all_broad = pd.DataFrame('', index=all_broad, columns=['ccle', 'sanger'])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"all_ccle = pd.concat([\n", | ||
" ccle_model_info['SAMPLE_ID'].replace(fibroblast_maps),\n", | ||
" gdsc_model_info['CCLE_ID'].replace(fibroblast_maps),\n", | ||
" depmap['CCLE_Name'].replace(fibroblast_maps)\n", | ||
"]).dropna().drop_duplicates().sort_values().reset_index(drop=True)\n", | ||
"\n", | ||
"all_ccle = pd.DataFrame('', index=all_ccle, columns=['sanger', 'broad'])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"all_sanger = pd.concat([\n", | ||
" gdsc_model_info['model_id'],\n", | ||
" depmap['Sanger_Model_ID'],\n", | ||
"]).dropna().drop_duplicates().sort_values().reset_index(drop=True)\n", | ||
"\n", | ||
"all_sanger = pd.DataFrame('', index=all_sanger, columns=['ccle', 'broad'])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"depmap_formatted = (depmap\n", | ||
" .loc[:, ['DepMap_ID', 'CCLE_Name', 'Sanger_Model_ID']]\n", | ||
" .rename(columns={'CCLE_Name': 'ccle_name', 'Sanger_Model_ID': 'sanger', 'DepMap_ID': 'broad'})\n", | ||
")\n", | ||
"depmap_formatted['ccle_name'] = depmap_formatted['ccle_name'].replace(fibroblast_maps)\n", | ||
"\n", | ||
"ccle_formatted = (ccle_model_info\n", | ||
" .loc[:, ['SAMPLE_ID', 'DEPMAPID']]\n", | ||
" .rename(columns={'SAMPLE_ID': 'ccle_name', 'DEPMAPID': 'broad'})\n", | ||
" )\n", | ||
"ccle_formatted['ccle_name'] = ccle_formatted['ccle_name'].replace(fibroblast_maps)\n", | ||
"\n", | ||
"sanger_formatted = (\n", | ||
" gdsc_model_info\n", | ||
" .loc[:, ['model_id', 'CCLE_ID', 'BROAD_ID']]\n", | ||
" .rename(columns={'model_id': 'sanger', 'CCLE_ID': 'ccle_name', 'BROAD_ID': 'broad'})\n", | ||
")\n", | ||
"sanger_formatted['ccle_name'] = sanger_formatted['ccle_name'].replace(fibroblast_maps)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"depmap_sanger = pd.concat([\n", | ||
" depmap_formatted,\n", | ||
" sanger_formatted,\n", | ||
"])\n", | ||
"\n", | ||
"missing_ccle = ccle_formatted[~ccle_formatted['ccle_name'].isin(depmap_sanger['ccle_name'])]\n", | ||
"depmap_sanger = pd.concat([\n", | ||
" depmap_sanger,\n", | ||
" missing_ccle\n", | ||
"])\n", | ||
"\n", | ||
"depmap_sanger = (depmap_sanger\n", | ||
" .sort_values(['broad', 'ccle_name', 'sanger'])\n", | ||
" .drop_duplicates(['broad', 'ccle_name'], keep='first')\n", | ||
")\n", | ||
"\n", | ||
"depmap_sanger.to_csv('formatted/cell-line-names.raw.txt', sep='\\t', index=False)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Check" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"checked = pd.read_csv('formatted/cell-line-names.formatted.txt', sep='\\t')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"True 1927\n", | ||
"False 1\n", | ||
"Name: index, dtype: int64" | ||
] | ||
}, | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"idx_ccle = (all_ccle.reset_index()['index'].isin(checked['ccle_name']) | all_ccle.reset_index()['index'].isin(checked['alt_ccle']))\n", | ||
"idx_ccle.value_counts()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"1673 SR786_HAEMATOPOIETIC_AND_LYMPHOID_TISSUE;SR786...\n", | ||
"Name: index, dtype: object" | ||
] | ||
}, | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"all_ccle.reset_index()[~idx_ccle]['index']" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"True 1823\n", | ||
"Name: index, dtype: int64" | ||
] | ||
}, | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"idx_broad = all_broad.reset_index()['index'].isin(checked['broad']) | all_broad.reset_index()['index'].isin(checked['alt_broad'])\n", | ||
"idx_broad.value_counts()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"Series([], Name: broad, dtype: int64)" | ||
] | ||
}, | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"checked['broad'].value_counts()[checked['broad'].value_counts().gt(1)]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"1 1580\n", | ||
"Name: sanger, dtype: int64" | ||
] | ||
}, | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"checked['sanger'].value_counts().value_counts()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "moalmanac", | ||
"language": "python", | ||
"name": "moalmanac" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
Oops, something went wrong.