Skip to content

Commit

Permalink
Fix crash when creating Torch tensor on NPU with device=get_accelerat…
Browse files Browse the repository at this point in the history
…or().current_device() (microsoft#5464)

Creating a Torch tensor with the parameter
`device=get_accelerator().current_device()` can result in a crash when
using an NPU.

This issue arises because the `current_device` API across all
accelerators is expected to return a device id as an integer, according
to the [interface
docs.](https://github.com/microsoft/DeepSpeed/blob/fa8458b1a80d6ba55091b17f092de19bbf95eb3d/docs/_tutorials/accelerator-abstraction-interface.md?plain=1#L52C1-L56C103)

However, specifying `device` as an interger when creating tensors by
default directs Torch to use the CUDA backend, which leads to crash on
NPUs (and potentially other accelerators as well).

To resolve this, we should use `get_accelerator().current_device_name()`
instead, which returns the correct device identifier strings such as
`"npu:0", "cuda:0", or "xpu:0"`. This API provides the appropriate
context needed for creating tensors on specific hardware accelerators.

I also notice that `device=get_accelerator().current_device()` is used
across several files under deepspeed/inference, and may also lead to
crash on other accelerators.

---------

Co-authored-by: Olatunji Ruwase <[email protected]>
Co-authored-by: Logan Adams <[email protected]>
  • Loading branch information
3 people authored and umchand committed May 20, 2024
1 parent dd1597c commit a7fa4fd
Show file tree
Hide file tree
Showing 4 changed files with 8 additions and 6 deletions.
2 changes: 1 addition & 1 deletion deepspeed/linear/optimized_linear.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ def __init__(self,
self.bias = bias
self.lora_config = lora_config
self.quantization_config = quantization_config
device = get_accelerator().current_device() if device is None else device
device = get_accelerator().current_device_name() if device is None else device
assert self.lora_config is not None, "DSOptimizedLinear requires a LoRA config"

self.zero_shards = self.lora_config.base_weight_sharding
Expand Down
2 changes: 1 addition & 1 deletion deepspeed/runtime/fp16/fused_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -241,7 +241,7 @@ def _get_norm_mask_idx(self, group):
group_mask_idx_list.append([grad_flat_st_idx, grad_flat_en_idx])
grad_flat_st_idx = grad_flat_en_idx

return torch.tensor(group_mask_idx_list, device=get_accelerator().current_device())
return torch.tensor(group_mask_idx_list, device=get_accelerator().current_device_name())

def step(self, closure=None):
"""
Expand Down
8 changes: 5 additions & 3 deletions deepspeed/runtime/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,7 +171,7 @@ def get_norm_with_moe_layers_fast(all_groups_norm, group):
# This implementation standardizes the grad_norm across ranks. A more precise implementation can be found in 'get_norm_with_moe_layers'.
# Need to allreduce (avg) the norms across different ranks because moe params will not be synced during allreduce
scaled_norm = all_groups_norm * 1.0 / float(dist.get_world_size(group=group))
scaled_norm_tensor = torch.tensor(scaled_norm, device=get_accelerator().current_device(), dtype=torch.float)
scaled_norm_tensor = torch.tensor(scaled_norm, device=get_accelerator().current_device_name(), dtype=torch.float)
dist.all_reduce(scaled_norm_tensor, group=group)
all_groups_norm = scaled_norm_tensor.item()
#print(f"old = {all_groups_norm_old} and new = {all_groups_norm} at rank: {deepspeed.comm.get_rank()}")
Expand Down Expand Up @@ -424,9 +424,11 @@ def get_flattened_grad_norm(parameters, norm_type=2, mpu=None, grad_norm_mask=No
# # mask_tensor_ = torch.zeros_like(p, device=p.device, dtype=bool)
# # for mask_idx in grad_norm_mask[idx]:
# # mask_tensor_[mask_idx[0]:mask_idx[1]] = True
cum_sum_pairs = torch.tensor([1, -1], device=get_accelerator().current_device(),
cum_sum_pairs = torch.tensor([1, -1], device=get_accelerator().current_device_name(),
dtype=p.dtype).repeat(grad_norm_mask[idx].shape[0], 1)
mask_tensor = torch.zeros(p.shape[0] + 1, device=get_accelerator().current_device(), dtype=p.dtype)
mask_tensor = torch.zeros(p.shape[0] + 1,
device=get_accelerator().current_device_name(),
dtype=p.dtype)
mask_tensor = mask_tensor.scatter_(0, grad_norm_mask[idx].view(-1),
cum_sum_pairs.view(-1)).cumsum(0).bool()[:-1]

Expand Down
2 changes: 1 addition & 1 deletion tests/unit/moe/test_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,7 @@ class TestTopk(DistributedTest):
world_size = 2

def test(self):
device = get_accelerator().current_device()
device = get_accelerator().current_device_name()
if dist.get_rank() == 0:
logits = torch.rand(2, 2, device=device)
elif dist.get_rank() == 1:
Expand Down

0 comments on commit a7fa4fd

Please sign in to comment.