Skip to content

triaction package for triadic interactions

Notifications You must be signed in to change notification settings

turing-roche/triaction

 
 

Repository files navigation

Triaction : Python code for triadic interactions

logo.png

This repository contains the Python package called triaction, which enables the detection of triadic interactions. It also provides visualization capabilities to visualise triadic interaction network.

The package has been created by Anthony Baptista and Ginestra Bianconi.

arXiv link to the preprint: https://arxiv.org/abs/2404.14997

Installation

$ python setup.py install

Data

Continuous data:
  • Gene expression

Gene expression of Acute Myeloid Leukemia (AML)

Scatter plot of the results of the Triaction algorithm on AML gene expression data. Each data point shows the information-theoretic measures for a triple of nodes $X$, $Y$ and $Z$, namely MI and CMI, the mutual information and conditional mutual information between $X$ and $Y$, respectively. The colour of each point corresponds to the value of \Sigma , which characterises the strength of the triadic interaction between gene $Z$ and the edge between $X$ and $Y$.

output/MI_merge.png

from triaction.analysis import decision_tree_val, visualisation_conditioned_val

gene_expression = pd.read_csv('data/reduce_gene_expression.tsv', sep = '\t', index_col=0)
name_X = 'GATA1'
name_Y = 'TAL1'
name_Z = 'KLF5'
X = np.array(gene_expression.T[name_X])
Y = np.array(gene_expression.T[name_Y])
Z = np.array(gene_expression.T[name_Z])

timeseries = np.zeros((3,len(X)))
timeseries[0,:] = X
timeseries[1,:] = Y
timeseries[2,:] = Z
num = 5
tlen = len(X)
I = [0,1,2]
visualisation_conditioned_val(timeseries, I, num, tlen, name = save_folder + '/' + 'good', cond = [th1,th2])

output/good.png

from triaction.triadic_vis import triadic_network_vis_from_data_and_graph

ppi = pd.read_csv('data/reduce_ppi.tsv', sep = '\t')
graph_ppi = nx.from_pandas_edgelist(ppi, source = '0', target = '1')
short_range = pd.read_csv('data/short_range.txt', sep = '\t')

sub_triadic = pd.concat([short_range[short_range['P']<0.001], long_range[long_range['P']<0.001]]).reset_index()
sub_sub_triadic = sub_triadic.sort_values(by='Theta', ascending=False).reset_index()
sub_sub_triadic = sub_sub_triadic[0:10]

set_nodes = set(sub_sub_triadic['reg']).union(set(sub_sub_triadic['node1'])).union(set(sub_sub_triadic['node2']))
graph_ppi.remove_edges_from(list(nx.selfloop_edges(graph_ppi)))
sub_graph = nx.Graph(graph_ppi.subgraph(list(set_nodes)))

sub_final = sub_triadic[sub_triadic['node1'].isin(set_nodes)]
sub_final = sub_final[sub_final['node2'].isin(set_nodes)]
sub_final = sub_final[sub_final['reg'].isin(set_nodes)]
sub_final = sub_final.reset_index(drop=True)
top = len(sub_final)
triadic_network_vis_from_data_and_graph(sub_graph, sub_final, top)

output/triadic_vis_from_data.png

About

triaction package for triadic interactions

Resources

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.0%
  • Python 2.0%