generated from tulane-cmps6730/sample-project
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
1651eb1
commit fdf7c5d
Showing
1 changed file
with
142 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f7c7072e-41a8-4a68-816a-f138dfe2f713", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"from sklearn.feature_extraction.text import CountVectorizer\n", | ||
"from sklearn.pipeline import make_pipeline\n", | ||
"from sklearn.metrics import f1_score\n", | ||
"from sklearn.naive_bayes import BernoulliNB\n", | ||
"from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a2007cdd-38d5-40a5-9ed7-4f593d081a2e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"train_df = pd.read_csv(\"train.csv\")\n", | ||
"val_df = pd.read_csv(\"validation.csv\")\n", | ||
"test_df = pd.read_csv(\"test.csv\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "aa429827-8d41-44eb-a206-a5e5531ef105", | ||
"metadata": {}, | ||
"source": [ | ||
"### Evaluating Naive Bayes on Validation Data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f2c29088-90a7-4084-8b2c-be0651c36c20", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"BNB = make_pipeline(CountVectorizer(), BernoulliNB())\n", | ||
"BNB.fit(train_df[\"Stemmed\"], train_df[\"Result_Bin\"])\n", | ||
"\n", | ||
"# Predict on the test set\n", | ||
"y_pred = BNB.predict(val_df[\"Stemmed\"])\n", | ||
"y_val = val_df[\"Result_Bin\"]\n", | ||
"# Calculate F1\n", | ||
"f1 = f1_score(y_val, y_pred)\n", | ||
"print(\"F1 Score:\", f1)\n", | ||
"# Calculate Precision\n", | ||
"precision = precision_score(y_val, y_pred)\n", | ||
"print(\"Precision:\", round(precision, 3))\n", | ||
"# Calculate recall\n", | ||
"recall = recall_score(y_val, y_pred)\n", | ||
"print(\"Recall:\", round(recall, 3))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "48c88dff-14a5-4975-9670-1cc33cc611df", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"conf_matrix = confusion_matrix(y_val, y_pred)\n", | ||
"\n", | ||
"cm_display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix, display_labels = [\"Loss\",\"Win\"])\n", | ||
"cm_display.plot()\n", | ||
"plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "ae96b678-a0ba-46be-9759-b3ecb78c37fc", | ||
"metadata": {}, | ||
"source": [ | ||
"### Evaluating Naive Bayes on Testing Data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "649a1ffa-5717-4efa-ba97-6d6109e7cac7", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Predict on the test set\n", | ||
"y_pred = BNB.predict(test_df[\"Stemmed\"])\n", | ||
"y_test = test_df[\"Result_Bin\"]\n", | ||
"# Calculate F1\n", | ||
"f1 = f1_score(y_test, y_pred)\n", | ||
"print(\"F1 Score:\", f1)\n", | ||
"# Calculate Precision\n", | ||
"precision = precision_score(y_test, y_pred)\n", | ||
"print(\"Precision:\", round(precision, 3))\n", | ||
"# Calculate Recall\n", | ||
"recall = recall_score(y_test, y_pred)\n", | ||
"print(\"Recall:\", round(recall, 3))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "fcf8fd82-2256-465c-bf87-fffefdf87e6d", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"conf_matrix = confusion_matrix(y_test, y_pred)\n", | ||
"\n", | ||
"cm_display = ConfusionMatrixDisplay(confusion_matrix=conf_matrix, display_labels = [0,1])\n", | ||
"cm_display.plot()\n", | ||
"plt.show()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.18" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |