-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
78 changed files
with
1,980 additions
and
1,239 deletions.
There are no files selected for viewing
Empty file.
Empty file.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -40,3 +40,8 @@ vignettes/*.pdf | |
*.o | ||
*.so | ||
*.Rproj | ||
tests/.DS_Store | ||
src/TMB/.DS_Store | ||
src/.DS_Store | ||
.github/.DS_Store | ||
.DS_Store |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,17 +1,17 @@ | ||
Package: tsdistributions | ||
Type: Package | ||
Title: Location Scale Standardized Distributions | ||
Version: 1.0.1 | ||
Version: 1.0.2 | ||
Authors@R: c(person("Alexios", "Galanos", role = c("aut", "cre","cph"), email = "[email protected]")) | ||
Maintainer: Alexios Galanos <[email protected]> | ||
Depends: R (>= 3.5.0), methods, tsmethods | ||
LinkingTo: TMB, RcppEigen | ||
Imports: TMB (>= 1.7.20), Rdpack, GeneralizedHyperbolic, KernSmooth, SkewHyperbolic, mev, stats, utils, data.table, zoo, Rsolnp, sandwich, future.apply, future, progressr | ||
LinkingTo: Rcpp, TMB, RcppEigen | ||
Imports: Rcpp, TMB (>= 1.7.20), Rdpack, GeneralizedHyperbolic, KernSmooth, SkewHyperbolic, mev, stats, utils, data.table, zoo, Rsolnp, sandwich, future.apply, future, progressr | ||
Description: Location-Scale based distributions parameterized in terms of mean, standard deviation, skew and shape parameters and estimation using automatic differentiation. Distributions include the Normal, Student and GED as well as their skewed variants ('Fernandez and Steel'), the 'Johnson SU', and the Generalized Hyperbolic. Also included is the semi-parametric piece wise distribution ('spd') with Pareto tails and kernel interior. | ||
License: GPL-2 | ||
Encoding: UTF-8 | ||
LazyData: true | ||
RoxygenNote: 7.3.1 | ||
RoxygenNote: 7.3.2 | ||
VignetteBuilder: knitr | ||
RdMacros: Rdpack | ||
URL: https://www.nopredict.com/packages/tsdistributions, https://github.com/tsmodels/tsdistributions | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
# Generated by using Rcpp::compileAttributes() -> do not edit by hand | ||
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 | ||
|
||
c_dghst <- function(x, mu, sigma, skew, shape, logr) { | ||
.Call(`_tsdistributions_c_dghst`, x, mu, sigma, skew, shape, logr) | ||
} | ||
|
||
c_rghst <- function(n, mu, sigma, skew, shape) { | ||
.Call(`_tsdistributions_c_rghst`, n, mu, sigma, skew, shape) | ||
} | ||
|
||
c_dghyp <- function(x, alpha, beta, delta, mu, lambda, logr) { | ||
.Call(`_tsdistributions_c_dghyp`, x, alpha, beta, delta, mu, lambda, logr) | ||
} | ||
|
||
c_dgh <- function(x, mu, sigma, skew, shape, lambda, logr) { | ||
.Call(`_tsdistributions_c_dgh`, x, mu, sigma, skew, shape, lambda, logr) | ||
} | ||
|
||
c_dnig <- function(x, mu, sigma, skew, shape, logr) { | ||
.Call(`_tsdistributions_c_dnig`, x, mu, sigma, skew, shape, logr) | ||
} | ||
|
||
c_rstd <- function(n, mu, sigma, shape) { | ||
.Call(`_tsdistributions_c_rstd`, n, mu, sigma, shape) | ||
} | ||
|
||
c_dstd <- function(x, mu, sigma, shape, logr) { | ||
.Call(`_tsdistributions_c_dstd`, x, mu, sigma, shape, logr) | ||
} | ||
|
||
c_pstd <- function(q, mu, sigma, shape) { | ||
.Call(`_tsdistributions_c_pstd`, q, mu, sigma, shape) | ||
} | ||
|
||
c_qstd <- function(p, mu, sigma, shape) { | ||
.Call(`_tsdistributions_c_qstd`, p, mu, sigma, shape) | ||
} | ||
|
||
c_rsstd <- function(n, mu, sigma, skew, shape) { | ||
.Call(`_tsdistributions_c_rsstd`, n, mu, sigma, skew, shape) | ||
} | ||
|
||
c_dsstd <- function(x, mu, sigma, skew, shape, logr) { | ||
.Call(`_tsdistributions_c_dsstd`, x, mu, sigma, skew, shape, logr) | ||
} | ||
|
||
c_psstd <- function(q, mu, sigma, skew, shape) { | ||
.Call(`_tsdistributions_c_psstd`, q, mu, sigma, skew, shape) | ||
} | ||
|
||
c_qsstd <- function(p, mu, sigma, skew, shape) { | ||
.Call(`_tsdistributions_c_qsstd`, p, mu, sigma, skew, shape) | ||
} | ||
|
||
c_djsu <- function(x, mu, sigma, skew, shape, logr) { | ||
.Call(`_tsdistributions_c_djsu`, x, mu, sigma, skew, shape, logr) | ||
} | ||
|
||
c_qjsu <- function(p, mu, sigma, skew, shape) { | ||
.Call(`_tsdistributions_c_qjsu`, p, mu, sigma, skew, shape) | ||
} | ||
|
||
c_pjsu <- function(q, mu, sigma, skew, shape) { | ||
.Call(`_tsdistributions_c_pjsu`, q, mu, sigma, skew, shape) | ||
} | ||
|
||
c_rjsu <- function(n, mu, sigma, skew, shape) { | ||
.Call(`_tsdistributions_c_rjsu`, n, mu, sigma, skew, shape) | ||
} | ||
|
||
c_rsnorm <- function(n, mu, sigma, skew) { | ||
.Call(`_tsdistributions_c_rsnorm`, n, mu, sigma, skew) | ||
} | ||
|
||
c_dsnorm <- function(x, mu, sigma, skew, logr) { | ||
.Call(`_tsdistributions_c_dsnorm`, x, mu, sigma, skew, logr) | ||
} | ||
|
||
c_psnorm <- function(q, mu, sigma, skew) { | ||
.Call(`_tsdistributions_c_psnorm`, q, mu, sigma, skew) | ||
} | ||
|
||
c_qsnorm <- function(p, mu, sigma, skew) { | ||
.Call(`_tsdistributions_c_qsnorm`, p, mu, sigma, skew) | ||
} | ||
|
||
c_rged <- function(n, mu, sigma, shape) { | ||
.Call(`_tsdistributions_c_rged`, n, mu, sigma, shape) | ||
} | ||
|
||
c_dged <- function(x, mu, sigma, shape, logr) { | ||
.Call(`_tsdistributions_c_dged`, x, mu, sigma, shape, logr) | ||
} | ||
|
||
c_pged <- function(q, mu, sigma, shape) { | ||
.Call(`_tsdistributions_c_pged`, q, mu, sigma, shape) | ||
} | ||
|
||
c_qged <- function(p, mu, sigma, shape) { | ||
.Call(`_tsdistributions_c_qged`, p, mu, sigma, shape) | ||
} | ||
|
||
c_rsged <- function(n, mu, sigma, skew, shape) { | ||
.Call(`_tsdistributions_c_rsged`, n, mu, sigma, skew, shape) | ||
} | ||
|
||
c_dsged <- function(x, mu, sigma, skew, shape, logr) { | ||
.Call(`_tsdistributions_c_dsged`, x, mu, sigma, skew, shape, logr) | ||
} | ||
|
||
c_psged <- function(q, mu, sigma, skew, shape) { | ||
.Call(`_tsdistributions_c_psged`, q, mu, sigma, skew, shape) | ||
} | ||
|
||
c_qsged <- function(p, mu, sigma, skew, shape) { | ||
.Call(`_tsdistributions_c_qsged`, p, mu, sigma, skew, shape) | ||
} | ||
|
||
c_dhyp <- function(x, mu, sigma, skew, shape, logr) { | ||
.Call(`_tsdistributions_c_dhyp`, x, mu, sigma, skew, shape, logr) | ||
} | ||
|
||
c_rghyp <- function(n, mu = 0, delta = 1, alpha = 1, beta = 0, lambda = 1) { | ||
.Call(`_tsdistributions_c_rghyp`, n, mu, delta, alpha, beta, lambda) | ||
} | ||
|
Empty file.
Empty file.
Empty file.
Empty file.
Oops, something went wrong.