Skip to content

User Guide

lilyeisner edited this page Jun 10, 2020 · 6 revisions

User Guide: Test-Retest Reliability and Stability

Installation

pip install reliability-stability:

>>> pip install reliability-stability-calc

Usage

Python Usage

Package can be imported into python file as:

>>> import reliability_stability

Import other necessary packages:

>>> import numpy as np
>>> import pandas as pd
>>> from matplotlib import pyplot

Import data to Pandas DataFrame:

>>> data = pd.read_csv('example_data_file.csv')

Once imported, call each function like this:

>>> reliability_stability_pkg.calc_correlation(data, 'column_one_header', 'column_two_header') 

Terminal Usage

Coming soon!

Package Functions and Parameters

calc_correlation:

Parameters:

  • pandas data frame
  • first column header
  • second column header

Returns:

  • correlation between column one and column two
  • floating point number

calc_reliability:

Parameters:

  • pandas data frame
  • first column header
  • second column header
  • third column header

Returns:

  • test-retest reliability between column one, column two, and column three
  • floating point number

calc_stability:

Parameters:

  • pandas data frame
  • first column header
  • second column header
  • third column header

Returns:

  • test-retest stability between column one and column two, column two and column three, and column one and column three
  • tuple with stability_12, stability_23, stability_13
  • floating point numbers

assumption_test:

Parameters:

  • pandas data frame (or subset of a dataframe)
  • first column header
  • second column header
  • third column header
  • fourth column header

Returns:

  • assumption test for four columns of test-retest data
  • floating point number

bootstrap_assumption_test:

Parameters:

  • pandas data frame
  • first column header
  • second column header
  • third column header
  • fourth column header
  • desired number of bootstraps to run
  • desired confidence interval for statistical test between 0 and 1

Returns:

  • pyplot histogram for assumption test run on each bootstrap
  • lower bound and upper bound for bootstrap statistical confidence interval