-
Notifications
You must be signed in to change notification settings - Fork 1
User Guide
lilyeisner edited this page Jun 10, 2020
·
6 revisions
pip install reliability-stability:
>>> pip install reliability-stability-calc
Package can be imported into python file as:
>>> import reliability_stability
Import other necessary packages:
>>> import numpy as np
>>> import pandas as pd
>>> from matplotlib import pyplot
Import data to Pandas DataFrame:
>>> data = pd.read_csv('example_data_file.csv')
Once imported, call each function like this:
>>> reliability_stability_pkg.calc_correlation(data, 'column_one_header', 'column_two_header')
Coming soon!
Parameters:
- pandas data frame
- first column header
- second column header
Returns:
- correlation between column one and column two
- floating point number
Parameters:
- pandas data frame
- first column header
- second column header
- third column header
Returns:
- test-retest reliability between column one, column two, and column three
- floating point number
Parameters:
- pandas data frame
- first column header
- second column header
- third column header
Returns:
- test-retest stability between column one and column two, column two and column three, and column one and column three
- tuple with stability_12, stability_23, stability_13
- floating point numbers
Parameters:
- pandas data frame (or subset of a dataframe)
- first column header
- second column header
- third column header
- fourth column header
Returns:
- assumption test for four columns of test-retest data
- floating point number
Parameters:
- pandas data frame
- first column header
- second column header
- third column header
- fourth column header
- desired number of bootstraps to run
- desired confidence interval for statistical test between 0 and 1
Returns:
- pyplot histogram for assumption test run on each bootstrap
- lower bound and upper bound for bootstrap statistical confidence interval