Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

mnist cuda #47

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ datasets/

# Ignore log folders
log/
logs/

# Ignore emacs saved files
*.*~
Expand Down
363 changes: 363 additions & 0 deletions train-a-digit-classifier/train-on-mnist-cuda.lua
Original file line number Diff line number Diff line change
@@ -0,0 +1,363 @@
----------------------------------------------------------------------
-- This script shows how to train different models on the MNIST
-- dataset, using multiple optimization techniques (SGD, LBFGS)
--
-- This script demonstrates a classical example of training
-- well-known models (convnet, MLP, logistic regression)
-- on a 10-class classification problem.
--
-- It illustrates several points:
-- 1/ description of the model
-- 2/ choice of a loss function (criterion) to minimize
-- 3/ creation of a dataset as a simple Lua table
-- 4/ description of training and test procedures
--
-- Clement Farabet
----------------------------------------------------------------------

require 'torch'
require 'cutorch'
require 'cunn'
require 'nnx'
require 'optim'
require 'image'
require 'dataset-mnist'
require 'pl'
require 'paths'

----------------------------------------------------------------------
-- parse command-line options
--
local opt = lapp[[
-s,--save (default "logs") subdirectory to save logs
-n,--network (default "") reload pretrained network
-m,--model (default "convnet") type of model tor train: convnet | mlp | linear
-f,--full use the full dataset
-p,--plot plot while training
-o,--optimization (default "SGD") optimization: SGD | LBFGS
-r,--learningRate (default 0.05) learning rate, for SGD only
-b,--batchSize (default 10) batch size
-m,--momentum (default 0) momentum, for SGD only
-i,--maxIter (default 3) maximum nb of iterations per batch, for LBFGS
--coefL1 (default 0) L1 penalty on the weights
--coefL2 (default 0) L2 penalty on the weights
-t,--threads (default 4) number of threads
]]

-- fix seed
torch.manualSeed(1)

-- threads
torch.setnumthreads(opt.threads)
print('<torch> set nb of threads to ' .. torch.getnumthreads())

-- use floats, for SGD
if opt.optimization == 'SGD' then
torch.setdefaulttensortype('torch.FloatTensor')
end

-- batch size?
if opt.optimization == 'LBFGS' and opt.batchSize < 100 then
error('LBFGS should not be used with small mini-batches; 1000 is recommended')
end

----------------------------------------------------------------------
-- define model to train
-- on the 10-class classification problem
--
classes = {'1','2','3','4','5','6','7','8','9','10'}

-- geometry: width and height of input images
geometry = {32,32}

if opt.network == '' then
-- define model to train
model = nn.Sequential()

if opt.model == 'convnet' then
------------------------------------------------------------
-- convolutional network
------------------------------------------------------------
-- stage 1 : mean suppresion -> filter bank -> squashing -> max pooling
model:add(nn.SpatialConvolution(1, 32, 5, 5))
model:add(nn.Tanh())
model:add(nn.SpatialMaxPooling(3, 3, 3, 3))
-- stage 2 : mean suppresion -> filter bank -> squashing -> max pooling
model:add(nn.SpatialConvolution(32, 64, 5, 5))
model:add(nn.Tanh())
model:add(nn.SpatialMaxPooling(2, 2, 2, 2))
-- stage 3 : standard 2-layer MLP:
model:add(nn.Reshape(64*2*2))
model:add(nn.Linear(64*2*2, 200))
model:add(nn.Tanh())
model:add(nn.Linear(200, #classes))
------------------------------------------------------------

elseif opt.model == 'mlp' then
------------------------------------------------------------
-- regular 2-layer MLP
------------------------------------------------------------
model:add(nn.Reshape(1024))
model:add(nn.Linear(1024, 2048))
model:add(nn.Tanh())
model:add(nn.Linear(2048,#classes))
------------------------------------------------------------

elseif opt.model == 'linear' then
------------------------------------------------------------
-- simple linear model: logistic regression
------------------------------------------------------------
model:add(nn.Reshape(1024))
model:add(nn.Linear(1024,#classes))
------------------------------------------------------------

else
print('Unknown model type')
cmd:text()
error()
end
else
print('<trainer> reloading previously trained network')
model = torch.load(opt.network)
end

-- verbose
print('<mnist> using model:')
print(model)

----------------------------------------------------------------------
-- loss function: negative log-likelihood
--
model:add(nn.LogSoftMax())
model2 = model:cuda()
model = nn.Sequential()
model:add(nn.Copy('torch.FloatTensor', 'torch.CudaTensor'))
model:add(model2)
model:add(nn.Copy('torch.CudaTensor', 'torch.FloatTensor'))
criterion = nn.ClassNLLCriterion()

-- retrieve parameters and gradients
parameters,gradParameters = model:getParameters()

----------------------------------------------------------------------
-- get/create dataset
--
if opt.full then
nbTrainingPatches = 60000
nbTestingPatches = 10000
else
nbTrainingPatches = 2000
nbTestingPatches = 1000
print('<warning> only using 2000 samples to train quickly (use flag -full to use 60000 samples)')
end

-- create training set and normalize
trainData = mnist.loadTrainSet(nbTrainingPatches, geometry)
trainData:normalizeGlobal(mean, std)

-- create test set and normalize
testData = mnist.loadTestSet(nbTestingPatches, geometry)
testData:normalizeGlobal(mean, std)

----------------------------------------------------------------------
-- define training and testing functions
--

-- this matrix records the current confusion across classes
confusion = optim.ConfusionMatrix(classes)

-- log results to files
trainLogger = optim.Logger(paths.concat(opt.save, 'train.log'))
testLogger = optim.Logger(paths.concat(opt.save, 'test.log'))

-- training function
function train(dataset)
-- epoch tracker
epoch = epoch or 1

-- local vars
local time = sys.clock()

-- do one epoch
print('<trainer> on training set:')
print("<trainer> online epoch # " .. epoch .. ' [batchSize = ' .. opt.batchSize .. ']')
for t = 1,dataset:size(),opt.batchSize do
-- create mini batch
local inputs = torch.Tensor(opt.batchSize,1,geometry[1],geometry[2])
local targets = torch.Tensor(opt.batchSize)
local k = 1
for i = t,math.min(t+opt.batchSize-1,dataset:size()) do
-- load new sample
local sample = dataset[i]
local input = sample[1]:clone()
local _,target = sample[2]:clone():max(1)
target = target:squeeze()
inputs[k] = input
targets[k] = target
k = k + 1
end

-- create closure to evaluate f(X) and df/dX
local feval = function(x)
-- just in case:
collectgarbage()

-- get new parameters
if x ~= parameters then
parameters:copy(x)
end

-- reset gradients
gradParameters:zero()

-- evaluate function for complete mini batch
local outputs = model:forward(inputs)
local f = criterion:forward(outputs, targets)

-- estimate df/dW
local df_do = criterion:backward(outputs, targets)
model:backward(inputs, df_do)

-- penalties (L1 and L2):
if opt.coefL1 ~= 0 or opt.coefL2 ~= 0 then
-- locals:
local norm,sign= torch.norm,torch.sign

-- Loss:
f = f + opt.coefL1 * norm(parameters,1)
f = f + opt.coefL2 * norm(parameters,2)^2/2

-- Gradients:
gradParameters:add( sign(parameters):mul(opt.coefL1) + parameters:clone():mul(opt.coefL2) )
end

-- update confusion
for i = 1,opt.batchSize do
confusion:add(outputs[i], targets[i])
end

-- return f and df/dX
return f,gradParameters
end

-- optimize on current mini-batch
if opt.optimization == 'LBFGS' then

-- Perform LBFGS step:
lbfgsState = lbfgsState or {
maxIter = opt.maxIter,
lineSearch = optim.lswolfe
}
optim.lbfgs(feval, parameters, lbfgsState)

-- disp report:
print('LBFGS step')
print(' - progress in batch: ' .. t .. '/' .. dataset:size())
print(' - nb of iterations: ' .. lbfgsState.nIter)
print(' - nb of function evalutions: ' .. lbfgsState.funcEval)

elseif opt.optimization == 'SGD' then

-- Perform SGD step:
sgdState = sgdState or {
learningRate = opt.learningRate,
momentum = opt.momentum,
learningRateDecay = 5e-7
}
optim.sgd(feval, parameters, sgdState)

-- disp progress
xlua.progress(t, dataset:size())

else
error('unknown optimization method')
end
end

-- time taken
time = sys.clock() - time
time = time / dataset:size()
print("<trainer> time to learn 1 sample = " .. (time*1000) .. 'ms')

-- print confusion matrix
print(confusion)
trainLogger:add{['% mean class accuracy (train set)'] = confusion.totalValid * 100}
confusion:zero()

-- save/log current net
local filename = paths.concat(opt.save, 'mnist.net')
os.execute('mkdir -p ' .. sys.dirname(filename))
if paths.filep(filename) then
os.execute('mv ' .. filename .. ' ' .. filename .. '.old')
end
print('<trainer> saving network to '..filename)
-- torch.save(filename, model)

-- next epoch
epoch = epoch + 1
end

-- test function
function test(dataset)
-- local vars
local time = sys.clock()

-- test over given dataset
print('<trainer> on testing Set:')
for t = 1,dataset:size(),opt.batchSize do
-- disp progress
xlua.progress(t, dataset:size())

-- create mini batch
local inputs = torch.Tensor(opt.batchSize,1,geometry[1],geometry[2])
local targets = torch.Tensor(opt.batchSize)
local k = 1
for i = t,math.min(t+opt.batchSize-1,dataset:size()) do
-- load new sample
local sample = dataset[i]
local input = sample[1]:clone()
local _,target = sample[2]:clone():max(1)
target = target:squeeze()
inputs[k] = input
targets[k] = target
k = k + 1
end

-- test samples
local preds = model:forward(inputs)

-- confusion:
for i = 1,opt.batchSize do
confusion:add(preds[i], targets[i])
end
end

-- timing
time = sys.clock() - time
time = time / dataset:size()
print("<trainer> time to test 1 sample = " .. (time*1000) .. 'ms')

-- print confusion matrix
print(confusion)
testLogger:add{['% mean class accuracy (test set)'] = confusion.totalValid * 100}
confusion:zero()
end

----------------------------------------------------------------------
-- and train!
--

-- local vars
while true do
-- train/test
train(trainData)
test(testData)

-- plot errors
if opt.plot then
trainLogger:style{['% mean class accuracy (train set)'] = '-'}
testLogger:style{['% mean class accuracy (test set)'] = '-'}
trainLogger:plot()
testLogger:plot()
end
end