Skip to content

Uplift third_party/tt-mlir to b4405d0fdb860345e7c21699043bafa768ae085b 2024-12-24 #199

Uplift third_party/tt-mlir to b4405d0fdb860345e7c21699043bafa768ae085b 2024-12-24

Uplift third_party/tt-mlir to b4405d0fdb860345e7c21699043bafa768ae085b 2024-12-24 #199

GitHub Actions / TT-XLA Tests failed Dec 18, 2024 in 0s

352 tests run, 333 passed, 17 skipped, 2 failed.

Annotations

Check failure on line 114 in tests/TTIR/test_basic_ops.py

See this annotation in the file changed.

@github-actions github-actions / TT-XLA Tests

test_basic_ops.test_div_op[input_shapes1-0.35]

AssertionError: PCC is 0.12042849510908127 which is less than 0.99
Raw output
input_shapes = [(3, 3, 3), (3, 3, 3)], required_atol = 0.35

    @pytest.mark.parametrize(
        ["input_shapes", "required_atol"],
        [([(3, 3), (3, 3)], 0.01), ([(3, 3, 3), (3, 3, 3)], 35e-2)],
    )
    def test_div_op(input_shapes, required_atol):
        def module_div(a, b):
            return a / b
    
>       verify_module(module_div, input_shapes, required_atol=required_atol)

tests/TTIR/test_basic_ops.py:114: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
tests/infrastructure.py:84: in verify_module
    compare_tensor_to_golden(res, res_cpu, required_pcc, required_atol)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

tensor = Array([[[8.12336028e-01, 1.03518391e+00, 9.04765546e-01],
        [7.74874544e+00, 5.03910780e-01, 5.05351067e-01],
  ...383330e-04, 4.52847336e-04, 1.31704623e-03],
        [2.23474130e-02, 2.70953373e-04, 3.83235834e-04]]], dtype=float32)
golden = Array([[[8.1233597e-01, 1.0351859e+00, 9.0476555e-01],
        [7.7487454e+00, 5.0391078e-01, 5.0535107e-01],
        ... [1.2780575e+00, 1.5524986e+00, 5.8713937e+00],
        [7.5413010e+01, 7.9456836e-01, 1.0107306e+00]]], dtype=float32)
required_pcc = 0.99, required_atol = 0.35, assert_on_error = True

    def compare_tensor_to_golden(
        tensor, golden, required_pcc=0.99, required_atol=1e-2, assert_on_error=True
    ):
        ret = True
    
        if tensor.device != golden.device:
            tensor = jax.device_put(tensor, golden.device)
    
        ret = ret and tensor.shape == golden.shape
        if assert_on_error:
            assert ret, "Shapes do not match"
    
        if not tensor.flatten().size == 1:  # pcc invalid for scalar values
            pcc = jnp.min(jnp.corrcoef(tensor.flatten(), golden.flatten()))
            ret = ret and (
                pcc >= required_pcc or (tensor.flatten() == golden.flatten()).all()
            )
            if assert_on_error:
>               assert ret, f"PCC is {pcc} which is less than {required_pcc}"
E               AssertionError: PCC is 0.12042849510908127 which is less than 0.99

tests/infrastructure.py:56: AssertionError

Check failure on line 306 in tests/TTIR/test_basic_ops.py

See this annotation in the file changed.

@github-actions github-actions / TT-XLA Tests

test_basic_ops.test_remainder_op_lax[input_shapes0]

AssertionError: PCC is -0.5897884964942932 which is less than 0.99
Raw output
input_shapes = [(32, 32), (32, 32)]

    @pytest.mark.parametrize(
        "input_shapes",
        [
            [(32, 32), (32, 32)],
            pytest.param(
                [(3, 3), (3, 3)],
                marks=pytest.mark.skip(
                    reason="Fails due to https://github.com/tenstorrent/tt-xla/issues/70"
                ),
            ),
            pytest.param(
                [(3, 3, 3), (3, 3, 3)],
                marks=pytest.mark.skip(
                    reason="Fails due to https://github.com/tenstorrent/tt-xla/issues/70"
                ),
            ),
        ],
    )
    def test_remainder_op_lax(input_shapes):
        def module_remainder_lax(a, b):
            return jax.lax.rem(a, b)
    
>       verify_module(module_remainder_lax, input_shapes, required_atol=0.02)

tests/TTIR/test_basic_ops.py:306: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
tests/infrastructure.py:84: in verify_module
    compare_tensor_to_golden(res, res_cpu, required_pcc, required_atol)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

tensor = Array([[-2.1324447e+09,  6.4827883e-01, -1.6852636e+09, ...,
        -1.7396155e+09,  3.0123222e-01,  2.7203214e-01],
...1369e-02, -1.4744535e+09, -1.4079360e+09, ...,
        -1.1824051e+09, -2.1299971e+09,  1.7169273e-01]], dtype=float32)
golden = Array([[0.48858345, 0.07233179, 0.14556384, ..., 0.24919903, 0.05631757,
        0.27203214],
       [0.8987994 , 0.03...0214579],
       [0.07729137, 0.59417474, 0.40422392, ..., 0.0072273 , 0.40877748,
        0.17169273]], dtype=float32)
required_pcc = 0.99, required_atol = 0.02, assert_on_error = True

    def compare_tensor_to_golden(
        tensor, golden, required_pcc=0.99, required_atol=1e-2, assert_on_error=True
    ):
        ret = True
    
        if tensor.device != golden.device:
            tensor = jax.device_put(tensor, golden.device)
    
        ret = ret and tensor.shape == golden.shape
        if assert_on_error:
            assert ret, "Shapes do not match"
    
        if not tensor.flatten().size == 1:  # pcc invalid for scalar values
            pcc = jnp.min(jnp.corrcoef(tensor.flatten(), golden.flatten()))
            ret = ret and (
                pcc >= required_pcc or (tensor.flatten() == golden.flatten()).all()
            )
            if assert_on_error:
>               assert ret, f"PCC is {pcc} which is less than {required_pcc}"
E               AssertionError: PCC is -0.5897884964942932 which is less than 0.99

tests/infrastructure.py:56: AssertionError