Skip to content

Commit

Permalink
Add conv2d, maxpool2d, and reshape tests. Uplift MLIR to latest main …
Browse files Browse the repository at this point in the history
…+ stablehlo --> TTIR for conv2d, maxpool2d, and reshape

Skip xfailing tests because runtime failures causing segfault on device
closuer
  • Loading branch information
LPanosTT committed Oct 3, 2024
1 parent e7635fe commit 50fd849
Show file tree
Hide file tree
Showing 9 changed files with 167 additions and 13 deletions.
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
-f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html
jaxlib==0.4.31
jax
flax
cmake
ninja
clang-format
Expand Down
8 changes: 4 additions & 4 deletions tests/TTIR/test_basic_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ def module_abs(a):


#Broadcasted values are incorrect
@pytest.mark.xfail
@pytest.mark.skip("Broadcasted values are incorrect")
def test_broadcast_op():
def module_broadcast(a):
return jnp.broadcast_to(a, (2, 4))
Expand All @@ -28,7 +28,7 @@ def module_broadcast(a):


#error: 'ttir.constant' op failed to verify that all of {value, result} have same shape
@pytest.mark.xfail
@pytest.mark.skip("Index is out of bounds for the rank, should be between 0 and 0 however is 18446744073709551615")
def test_constant_op():
def module_constant_zeros(a):
zeros = jnp.zeros(a.shape)
Expand Down Expand Up @@ -105,7 +105,7 @@ def module_negate(a):


#Reduce is failing due to error in constant.
@pytest.mark.xfail
@pytest.mark.skip("keepdim=False is not supported")
def test_reduce_op():
def module_reduce_max(a):
return jnp.max(a)
Expand Down Expand Up @@ -152,7 +152,7 @@ def module_transpose(a):


# Transpose op failing for higher ranks/dimensions.
@pytest.mark.xfail
@pytest.mark.skip("Transpose op failing for higher ranks/dimensions.")
def test_transpose_op_3d():
def module_transpose(a):
return jnp.transpose(a)
Expand Down
67 changes: 67 additions & 0 deletions tests/TTIR/test_conv2d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC
#
# SPDX-License-Identifier: Apache-2.0

import pytest
import jax
import jax.numpy as jnp

from infrastructure import verify_module


@pytest.mark.parametrize(
"batch_size, output_channels, input_channels, input_height, input_width, filter_height, filter_width, stride_h, stride_w, padding",
(
# RESNET
(1, 64, 3, 224, 224, 7, 7, 2, 2, 3),
(1, 256, 64, 56, 56, 1, 1, 1, 1, 0),
(1, 64, 64, 56, 56, 1, 1, 1, 1, 0),
(1, 64, 64, 56, 56, 3, 3, 1, 1, 1),
(1, 64, 256, 56, 56, 1, 1, 1, 1, 0),
(1, 512, 256, 56, 56, 1, 1, 2, 2, 0),
(1, 128, 256, 56, 56, 1, 1, 2, 2, 0),
(1, 128, 128, 28, 28, 3, 3, 1, 1, 1),
(1, 512, 128, 28, 28, 1, 1, 1, 1, 0),
(1, 128, 512, 28, 28, 1, 1, 1, 1, 0),
# (1, 1024, 512, 28, 28, 1, 1, 2, 2, 0), Requires block sharding
(1, 256, 512, 28, 28, 1, 1, 2, 2, 0),
(1, 256, 256, 14, 14, 3, 3, 1, 1, 1),
(1, 1024, 256, 14, 14, 1, 1, 1, 1, 0),
(1, 256, 1024, 14, 14, 1, 1, 1, 1, 0),
# (1, 2048, 1024, 14, 14, 1, 1, 2, 2, 0), Requires block sharding
# (1, 512, 1024, 14, 14, 1, 1, 2, 2, 0), Requires block sharding
# (1, 512, 512, 7, 7, 3, 3, 1, 1, 1), Requires block sharding
# (1, 2048, 512, 7, 7, 1, 1, 1, 1, 0), Requires block sharding
# (1, 512, 2048, 7, 7, 1, 1, 1, 1, 0), Requires block sharding
# MISCELLANEOUS
(1, 64, 16, 115, 115, 4, 4, 1, 1, 0),
(1, 64, 64, 8, 8, 3, 3, 1, 1, 1),
(1, 64, 64, 16, 16, 3, 3, 1, 1, 1),
(1, 256, 256, 7, 7, 3, 3, 1, 1, 1),
(1, 256, 64, 56, 56, 1, 1, 2, 2, 0),
),
)
def test_conv2d(
batch_size,
output_channels,
input_channels,
input_height,
input_width,
filter_height,
filter_width,
stride_h,
stride_w,
padding
):
def module_conv(img, weights):
return jax.lax.conv_general_dilated(img, weights, [stride_h, stride_w], [[padding]*2]*2, dimension_numbers=('NHWC', 'OIHW', 'NHWC'))


img_shape = (batch_size, input_height, input_width, input_channels)
weights_shape = (output_channels, input_channels, filter_height, filter_width)

# Some resnet convolutions seem to require bfloat16, ttnn throws in runtime otherwise.
# On another note, MaxPool2d is also only supported for bfloat16 in ttnn, so we have
# to run resnet in bfloat16 for the time being.
verify_module(module_conv, [img_shape, weights_shape], required_pcc=0.95, required_atol=float("inf"), dtype=jnp.bfloat16)
64 changes: 64 additions & 0 deletions tests/TTIR/test_maxpool2d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC
#
# SPDX-License-Identifier: Apache-2.0

import pytest
import jax
import jax.numpy as jnp
import flax

from infrastructure import verify_module


@pytest.mark.parametrize(
"act_shape", ## NHWC
[
(1, 32, 32, 32),
(1, 32, 32, 64),
(1, 32, 32, 128),
(1, 32, 64, 32),
(1, 32, 64, 64),
(1, 32, 64, 128),
(1, 32, 128, 32),
(1, 32, 128, 64),
(1, 32, 128, 128),
(1, 64, 32, 32),
(1, 64, 32, 64),
(1, 64, 32, 128),
(1, 64, 64, 32),
(1, 64, 64, 64),
(1, 64, 64, 128),
(1, 64, 128, 32),
(1, 64, 128, 64),
(1, 64, 128, 128),
(1, 128, 32, 32),
(1, 128, 32, 64),
(1, 128, 32, 128),
(1, 128, 64, 32),
(1, 128, 64, 64),
(1, 128, 64, 128),
(1, 128, 128, 32),
(1, 128, 128, 64),
(1, 128, 128, 128),
],
)
def test_maxpool2d(
act_shape,
):
def module_maxpool(img):
return flax.linen.max_pool(img, window_shape=(2, 2), strides=(2, 2), padding=((0, 0), (0, 0)))

verify_module(module_maxpool, [act_shape], required_pcc=0.95, required_atol=float("inf"), dtype=jnp.bfloat16)

def test_resnet_maxpool2d():
# This maxpool doesnt work on its own because of the reshape that is inserted on its input
# Issue: https://github.com/tenstorrent/tt-metal/issues/12866
# It works with the conv on top since the output is already flattened.
# In resnet, this is essentially the sequence that occurs. The only difference is that
# there are a few eltwise ops in between.
def module_resnet_maxpool(act, weights):
x = jax.lax.conv_general_dilated(act, weights, [2, 2], ((3, 3), (3, 3)), dimension_numbers=('NHWC', 'OIHW', 'NHWC'))
x = flax.linen.max_pool(x, window_shape=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)))
return x

verify_module(module_resnet_maxpool, [(1, 224, 224, 3), (64, 3, 7, 7)], required_pcc=0.95, required_atol=float("inf"), dtype=jnp.bfloat16)
4 changes: 2 additions & 2 deletions tests/TTIR/test_mnist.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,14 +34,14 @@ def module_relu(a):

verify_module(module_relu, [(32, 32)])

@pytest.mark.xfail
@pytest.mark.skip("keepdims=False in runtime")
def test_softmax():
def module_softmax(a):
return jax.nn.softmax(a)

verify_module(module_softmax, [(32, 32)])

@pytest.mark.xfail
@pytest.mark.skip("Index is out of bounds for the rank, should be between 0 and 0 however is 18446744073709551615")
def test_mnist():
def module_mnist(act, w0, b0, w1, b1, w2, b2):
x = jnp.matmul(act, w0) + b0
Expand Down
22 changes: 22 additions & 0 deletions tests/TTIR/test_reshape.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC
#
# SPDX-License-Identifier: Apache-2.0

import pytest
import jax
import jax.numpy as jnp
import flax

from infrastructure import verify_module
@pytest.mark.parametrize("source_and_target_shape",
[((8, 32, 256), (2, 4, 32, 256)),
((8, 32, 32), (1, 2, 4, 32, 32)),
((8192, 128), (1, 256, 32, 128))
],
ids=["1", "2", "3"])
def test_reshape(source_and_target_shape):
act_shape, target_shape = source_and_target_shape
def module_reshape(act):
return jnp.reshape(act, target_shape)

verify_module(module_reshape, [act_shape])
4 changes: 2 additions & 2 deletions tests/TTIR/test_simple_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from infrastructure import verify_module


@pytest.mark.xfail
@pytest.mark.skip("Module contains function used inside the main function. Cannot compile Flatbuffer.")
def test_gradient():
def simple_gradient(a):
def gradient(a):
Expand All @@ -20,7 +20,7 @@ def gradient(a):
verify_module(simple_gradient, [(2, 2)])


@pytest.mark.xfail
@pytest.mark.skip("TT_METAL_HOME is not set.")
def test_simple_regression():
def simple_regression(weights, bias, X, y):
def loss(weights, bias, X, y):
Expand Down
8 changes: 4 additions & 4 deletions tests/infrastructure.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,9 @@
import jax
import jax.numpy as jnp

def random_input_tensor(shape, key=42, on_device=False):
def random_input_tensor(shape, key=42, on_device=False, dtype=jnp.float32):
def random_input(shape, key):
return jax.random.uniform(jax.random.PRNGKey(key), shape=shape)
return jax.random.uniform(jax.random.PRNGKey(key), shape=shape, dtype=dtype)

jitted_tensor_creator = jax.jit(random_input, static_argnums=[0,1], backend='cpu')
tensor = jitted_tensor_creator(shape, key)
Expand Down Expand Up @@ -37,9 +37,9 @@ def compare_tensor_to_golden(tensor, golden, required_pcc=0.99, required_atol=1e

return ret

def verify_module(module, input_shapes, key=42, required_pcc=0.99, required_atol=1e-2):
def verify_module(module, input_shapes, key=42, required_pcc=0.99, required_atol=1e-2, dtype=jnp.float32):
tt_device = jax.devices()[0]
cpu_inputs = [random_input_tensor(input_shapes[i], key + i) for i in range(len(input_shapes))]
cpu_inputs = [random_input_tensor(input_shapes[i], key + i, dtype=dtype) for i in range(len(input_shapes))]
tt_inputs = [jax.device_put(cpu_input, tt_device) for cpu_input in cpu_inputs]
graph = jax.jit(module)
res = graph(*tt_inputs)
Expand Down
2 changes: 1 addition & 1 deletion third_party/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
# SPDX-License-Identifier: Apache-2.0
#

set(TT_MLIR_VERSION "20a7ccd485a198fea14861e5a765dd51972e85f3")
set(TT_MLIR_VERSION "8c6494cb1f4fed060073f735b1f88c5da4d187f6")
set(LOGURU_VERSION "4adaa185883e3c04da25913579c451d3c32cfac1")

if (TOOLCHAIN STREQUAL "ON")
Expand Down

0 comments on commit 50fd849

Please sign in to comment.