Skip to content

Commit

Permalink
Add simple regression training example.
Browse files Browse the repository at this point in the history
Using 'tt' backend to execute training graph (forward/backward graphs) and
running rest of the code on 'cpu' backend.
Adding simple regression weights update as a test case
  • Loading branch information
mmanzoorTT committed Oct 1, 2024
1 parent 74d0932 commit 29e8cac
Show file tree
Hide file tree
Showing 2 changed files with 125 additions and 0 deletions.
89 changes: 89 additions & 0 deletions examples/simple_regression.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC
#
# SPDX-License-Identifier: Apache-2.0
#

from jax import grad, jit, vmap
import jax.numpy as jnp
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
import jax
import os
import sys
import jax._src.xla_bridge as xb

# Register cpu and tt plugin. tt plugin is registered with higher priority; so
# program will execute on tt device if not specified otherwise.
def initialize():
backend = "tt"
path = os.path.join(os.path.dirname(__file__), "../build/src/tt/pjrt_plugin_tt.so")
if not os.path.exists(path):
raise FileNotFoundError(f"Could not find tt_pjrt C API plugin at {path}")

print("Loading tt_pjrt C API plugin", file=sys.stderr)
xb.discover_pjrt_plugins()

plugin = xb.register_plugin('tt', priority=500, library_path=path, options=None)
print("Loaded", file=sys.stderr)
jax.config.update("jax_platforms", "tt,cpu")


# Create random inputs (weights) on cpu and move them to tt device if requested.
def random_input_tensor(shape, key=42, on_device=False):
def random_input(shape, key):
return jax.random.uniform(jax.random.PRNGKey(key), shape=shape)

jitted_tensor_creator = jax.jit(random_input, static_argnums=[0,1], backend='cpu')
tensor = jitted_tensor_creator(shape, key)
if on_device:
tensor = jax.device_put(tensor, jax.devices()[0])
return tensor


# Predict outcome label.
def predict(params, X):
w, b = params
return X.dot(w) + b


# Create a vectorized version of predict function.
batched_predict = vmap(predict, in_axes=(None, 0))


# Calculate loss for give dataset.
def loss(params, X, y):
pred = batched_predict(params, X)
return ((pred-y)**2).mean()


def test_simple_regression():
initialize()

X,y= make_regression(n_samples = 150, n_features= 2, noise = 5)
y=y.reshape((y.shape[0],1))
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.15) #Splitting data into train and test

Weights = random_input_tensor((X_train.shape[1], 1))
Bias = 0.
l_rate = 0.001
n_iter = 6000
size = 127.0
params = [Weights, Bias]

gradient = jit(grad(loss), backend="tt")
print(gradient.lower(params, X_train, y_train).as_text())

for i in range(n_iter):
dW, db = gradient(params,X_train,y_train)
if i % 10 == 0:
print(f"iteration: {i} {loss(params,X_train,y_train)}")
weights, bias = params
weights -= dW*l_rate
bias-= db*l_rate
params = [weights, bias]

test_loss = loss(params, X_test, y_test) #Model's Loss on test set


if __name__ == "__main__":
test_simple_regression()
36 changes: 36 additions & 0 deletions tests/TTIR/test_simple_regression.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC
#
# SPDX-License-Identifier: Apache-2.0

import pytest
import jax
import jax.numpy as jnp

from infrastructure import verify_module


@pytest.mark.xfail
def test_gradient():
def simple_gradient(a):
def gradient(a):
return (a ** 2).sum()

return jax.grad(gradient)(a)

verify_module(simple_gradient, [(2, 2)])


@pytest.mark.xfail
def test_simple_regression():
def simple_regression(weights, bias, X, y):
def loss(weights, bias, X, y):
predict = X.dot(weights) + bias
return ((predict - y) ** 2).sum()

# Compute gradient and update weights
weights -= jax.grad(loss)(weights, bias, X, y)

return weights

verify_module(simple_regression, [(1, 2), (1,1), (2, 1), (1, 1)])

0 comments on commit 29e8cac

Please sign in to comment.