[tests] add loss tests to CI #1829
700 tests run, 419 passed, 275 skipped, 6 failed.
Annotations
Check failure on line 38 in forge/test/mlir/test_loss.py
github-actions / TT-Forge-FE Tests
test_loss.test_l1_loss[mean-prediction_shape0]
assert False
+ where False = <built-in method allclose of type object at 0x7ff8c4096480>(tensor(1.21405, grad_fn=<MeanBackward0>), tensor([0.]), rtol=0.011)
+ where <built-in method allclose of type object at 0x7ff8c4096480> = torch.allclose
Raw output
prediction_shape = (33,), reduction = 'mean'
@pytest.mark.parametrize(
"prediction_shape",
[
(33,),
(128,),
(3, 5),
(32, 32),
(33, 127),
(128, 20),
],
)
@pytest.mark.parametrize("reduction", ["mean", "sum"])
@pytest.mark.push
def test_l1_loss(prediction_shape, reduction):
forge_loss = forge.op.loss.L1Loss("l1_loss", reduction=reduction)
torch_loss = torch.nn.L1Loss(reduction=reduction)
prediction = torch.randn(prediction_shape, requires_grad=True)
prediction_forge = forge.tensor.Tensor.create_from_torch(prediction)
target = torch.randn((prediction_shape))
target_forge = forge.tensor.Tensor.create_from_torch(target)
forge_loss = forge.compile(forge_loss, sample_inputs=[prediction_forge, target_forge])
forge_loss_out = forge_loss(prediction, target)
torch_loss_out = torch_loss(prediction, target)
> assert torch.allclose(torch_loss_out, forge_loss_out[0], rtol=11e-3)
E assert False
E + where False = <built-in method allclose of type object at 0x7ff8c4096480>(tensor(1.21405, grad_fn=<MeanBackward0>), tensor([0.]), rtol=0.011)
E + where <built-in method allclose of type object at 0x7ff8c4096480> = torch.allclose
forge/test/mlir/test_loss.py:38: AssertionError
Check failure on line 38 in forge/test/mlir/test_loss.py
github-actions / TT-Forge-FE Tests
test_loss.test_l1_loss[mean-prediction_shape2]
assert False
+ where False = <built-in method allclose of type object at 0x7ff8c4096480>(tensor(1.06760, grad_fn=<MeanBackward0>), tensor([[0.]]), rtol=0.011)
+ where <built-in method allclose of type object at 0x7ff8c4096480> = torch.allclose
Raw output
prediction_shape = (3, 5), reduction = 'mean'
@pytest.mark.parametrize(
"prediction_shape",
[
(33,),
(128,),
(3, 5),
(32, 32),
(33, 127),
(128, 20),
],
)
@pytest.mark.parametrize("reduction", ["mean", "sum"])
@pytest.mark.push
def test_l1_loss(prediction_shape, reduction):
forge_loss = forge.op.loss.L1Loss("l1_loss", reduction=reduction)
torch_loss = torch.nn.L1Loss(reduction=reduction)
prediction = torch.randn(prediction_shape, requires_grad=True)
prediction_forge = forge.tensor.Tensor.create_from_torch(prediction)
target = torch.randn((prediction_shape))
target_forge = forge.tensor.Tensor.create_from_torch(target)
forge_loss = forge.compile(forge_loss, sample_inputs=[prediction_forge, target_forge])
forge_loss_out = forge_loss(prediction, target)
torch_loss_out = torch_loss(prediction, target)
> assert torch.allclose(torch_loss_out, forge_loss_out[0], rtol=11e-3)
E assert False
E + where False = <built-in method allclose of type object at 0x7ff8c4096480>(tensor(1.06760, grad_fn=<MeanBackward0>), tensor([[0.]]), rtol=0.011)
E + where <built-in method allclose of type object at 0x7ff8c4096480> = torch.allclose
forge/test/mlir/test_loss.py:38: AssertionError
Check failure on line 38 in forge/test/mlir/test_loss.py
github-actions / TT-Forge-FE Tests
test_loss.test_l1_loss[mean-prediction_shape4]
assert False
+ where False = <built-in method allclose of type object at 0x7ff8c4096480>(tensor(1.14280, grad_fn=<MeanBackward0>), tensor([[0.]]), rtol=0.011)
+ where <built-in method allclose of type object at 0x7ff8c4096480> = torch.allclose
Raw output
prediction_shape = (33, 127), reduction = 'mean'
@pytest.mark.parametrize(
"prediction_shape",
[
(33,),
(128,),
(3, 5),
(32, 32),
(33, 127),
(128, 20),
],
)
@pytest.mark.parametrize("reduction", ["mean", "sum"])
@pytest.mark.push
def test_l1_loss(prediction_shape, reduction):
forge_loss = forge.op.loss.L1Loss("l1_loss", reduction=reduction)
torch_loss = torch.nn.L1Loss(reduction=reduction)
prediction = torch.randn(prediction_shape, requires_grad=True)
prediction_forge = forge.tensor.Tensor.create_from_torch(prediction)
target = torch.randn((prediction_shape))
target_forge = forge.tensor.Tensor.create_from_torch(target)
forge_loss = forge.compile(forge_loss, sample_inputs=[prediction_forge, target_forge])
forge_loss_out = forge_loss(prediction, target)
torch_loss_out = torch_loss(prediction, target)
> assert torch.allclose(torch_loss_out, forge_loss_out[0], rtol=11e-3)
E assert False
E + where False = <built-in method allclose of type object at 0x7ff8c4096480>(tensor(1.14280, grad_fn=<MeanBackward0>), tensor([[0.]]), rtol=0.011)
E + where <built-in method allclose of type object at 0x7ff8c4096480> = torch.allclose
forge/test/mlir/test_loss.py:38: AssertionError
Check failure on line 38 in forge/test/mlir/test_loss.py
github-actions / TT-Forge-FE Tests
test_loss.test_l1_loss[sum-prediction_shape0]
assert False
+ where False = <built-in method allclose of type object at 0x7ff8c4096480>(tensor(40.06364, grad_fn=<SumBackward0>), tensor([0.]), rtol=0.011)
+ where <built-in method allclose of type object at 0x7ff8c4096480> = torch.allclose
Raw output
prediction_shape = (33,), reduction = 'sum'
@pytest.mark.parametrize(
"prediction_shape",
[
(33,),
(128,),
(3, 5),
(32, 32),
(33, 127),
(128, 20),
],
)
@pytest.mark.parametrize("reduction", ["mean", "sum"])
@pytest.mark.push
def test_l1_loss(prediction_shape, reduction):
forge_loss = forge.op.loss.L1Loss("l1_loss", reduction=reduction)
torch_loss = torch.nn.L1Loss(reduction=reduction)
prediction = torch.randn(prediction_shape, requires_grad=True)
prediction_forge = forge.tensor.Tensor.create_from_torch(prediction)
target = torch.randn((prediction_shape))
target_forge = forge.tensor.Tensor.create_from_torch(target)
forge_loss = forge.compile(forge_loss, sample_inputs=[prediction_forge, target_forge])
forge_loss_out = forge_loss(prediction, target)
torch_loss_out = torch_loss(prediction, target)
> assert torch.allclose(torch_loss_out, forge_loss_out[0], rtol=11e-3)
E assert False
E + where False = <built-in method allclose of type object at 0x7ff8c4096480>(tensor(40.06364, grad_fn=<SumBackward0>), tensor([0.]), rtol=0.011)
E + where <built-in method allclose of type object at 0x7ff8c4096480> = torch.allclose
forge/test/mlir/test_loss.py:38: AssertionError
Check failure on line 38 in forge/test/mlir/test_loss.py
github-actions / TT-Forge-FE Tests
test_loss.test_l1_loss[sum-prediction_shape2]
assert False
+ where False = <built-in method allclose of type object at 0x7ff8c4096480>(tensor(16.01401, grad_fn=<SumBackward0>), tensor([[0.]]), rtol=0.011)
+ where <built-in method allclose of type object at 0x7ff8c4096480> = torch.allclose
Raw output
prediction_shape = (3, 5), reduction = 'sum'
@pytest.mark.parametrize(
"prediction_shape",
[
(33,),
(128,),
(3, 5),
(32, 32),
(33, 127),
(128, 20),
],
)
@pytest.mark.parametrize("reduction", ["mean", "sum"])
@pytest.mark.push
def test_l1_loss(prediction_shape, reduction):
forge_loss = forge.op.loss.L1Loss("l1_loss", reduction=reduction)
torch_loss = torch.nn.L1Loss(reduction=reduction)
prediction = torch.randn(prediction_shape, requires_grad=True)
prediction_forge = forge.tensor.Tensor.create_from_torch(prediction)
target = torch.randn((prediction_shape))
target_forge = forge.tensor.Tensor.create_from_torch(target)
forge_loss = forge.compile(forge_loss, sample_inputs=[prediction_forge, target_forge])
forge_loss_out = forge_loss(prediction, target)
torch_loss_out = torch_loss(prediction, target)
> assert torch.allclose(torch_loss_out, forge_loss_out[0], rtol=11e-3)
E assert False
E + where False = <built-in method allclose of type object at 0x7ff8c4096480>(tensor(16.01401, grad_fn=<SumBackward0>), tensor([[0.]]), rtol=0.011)
E + where <built-in method allclose of type object at 0x7ff8c4096480> = torch.allclose
forge/test/mlir/test_loss.py:38: AssertionError
Check failure on line 38 in forge/test/mlir/test_loss.py
github-actions / TT-Forge-FE Tests
test_loss.test_l1_loss[sum-prediction_shape4]
assert False
+ where False = <built-in method allclose of type object at 0x7ff8c4096480>(tensor(4789.45557, grad_fn=<SumBackward0>), tensor([[0.]]), rtol=0.011)
+ where <built-in method allclose of type object at 0x7ff8c4096480> = torch.allclose
Raw output
prediction_shape = (33, 127), reduction = 'sum'
@pytest.mark.parametrize(
"prediction_shape",
[
(33,),
(128,),
(3, 5),
(32, 32),
(33, 127),
(128, 20),
],
)
@pytest.mark.parametrize("reduction", ["mean", "sum"])
@pytest.mark.push
def test_l1_loss(prediction_shape, reduction):
forge_loss = forge.op.loss.L1Loss("l1_loss", reduction=reduction)
torch_loss = torch.nn.L1Loss(reduction=reduction)
prediction = torch.randn(prediction_shape, requires_grad=True)
prediction_forge = forge.tensor.Tensor.create_from_torch(prediction)
target = torch.randn((prediction_shape))
target_forge = forge.tensor.Tensor.create_from_torch(target)
forge_loss = forge.compile(forge_loss, sample_inputs=[prediction_forge, target_forge])
forge_loss_out = forge_loss(prediction, target)
torch_loss_out = torch_loss(prediction, target)
> assert torch.allclose(torch_loss_out, forge_loss_out[0], rtol=11e-3)
E assert False
E + where False = <built-in method allclose of type object at 0x7ff8c4096480>(tensor(4789.45557, grad_fn=<SumBackward0>), tensor([[0.]]), rtol=0.011)
E + where <built-in method allclose of type object at 0x7ff8c4096480> = torch.allclose
forge/test/mlir/test_loss.py:38: AssertionError