-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
93f2df6
commit 3123165
Showing
3 changed files
with
248 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC | ||
|
||
# SPDX-License-Identifier: Apache-2.0 |
244 changes: 244 additions & 0 deletions
244
forge/test/operators/pytorch/eltwise_unary/test_unary.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,244 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
|
||
# GENERAL OP SUPPORT TEST PLAN: | ||
# 1. Operand type - any supported type (e.g. add, matmul, conv2d, etc.) | ||
# 2. Operand source(s): | ||
# (+) 2.1 From another op | ||
# - Operator -> input | ||
# (+) 2.2 From DRAM queue | ||
# - Operator is first node in network | ||
# - Input_queue flag = false | ||
# (+) 2.3 Const Inputs (const eval pass) | ||
# - Operator where all inputs are constants. | ||
# (+) 2.4 From host | ||
# - Input tensor as input of network | ||
# - Operator is first node in network | ||
# - Input_queue flag = true | ||
# 3. Tensor ranks: | ||
# (+) 3.1 Full tensor (i.e. full expected shape) | ||
# - 3-4 by default P1 (high prioriy) | ||
# - 2, 5, ++ include P2 (lower prioriy) | ||
# (+) 3.2 Tensor reduce on one or more dims to 1 | ||
# - Vector | ||
# - Only one dim is not equal to 1 | ||
# (-) 3.3 Scalar P2 | ||
# - Create tensor of dimension equal to 0 (tensor from scalar) or just to use scalar as simple value | ||
# 4. Operand / output size of dimensions (few examples of each, 10 values total) | ||
# (+) 4.1 Divisible by 32 | ||
# (+) 4.2 Prime numbers | ||
# (+) 4.3 Very large (thousands, 10s of thousands) | ||
# - 100x100, 100x1000 | ||
# - maybe nightly only | ||
# (+) 4.4 Extreme ratios between height/width | ||
# (/) 4.5 ...probably many more interesting combinations here | ||
# 5. Data format - all supported formats | ||
# (/) 5.1 Output DF | ||
# (/) 5.2 Intermediate DF | ||
# (/) 5.3 Accumulation DF | ||
# (+) 5.4 Operand DFs | ||
# - Fix HiFi4 for math fidelity value | ||
# (+) 6. Math fidelity - LoFi, HiFi2a, Hifi2b, Hifi3, Hifi4 | ||
# - Fix fp16b (default) for data format value | ||
# (/) 7. Special attributes - if applicable.. like approx_mode for Exp, for example | ||
# (/) 8. Special cases - if applicable | ||
# 9. Variable number of operands - if applicable | ||
# (/) Few representative values | ||
# (/) Reuse inputs for selected operators | ||
|
||
|
||
import pytest | ||
import torch | ||
import torch.nn as nn | ||
import forge | ||
from forge.op_repo import TensorShape | ||
|
||
from typing import List, Dict | ||
from loguru import logger | ||
from forge import MathFidelity, DataFormat | ||
|
||
from test.operators.utils import InputSourceFlags, VerifyUtils | ||
from test.operators.utils import InputSource | ||
from test.operators.utils import TestVector | ||
from test.operators.utils import TestPlan | ||
from test.operators.utils import FailingReasons | ||
from test.operators.utils.compat import TestDevice | ||
from test.operators.utils import TestCollection | ||
from test.operators.utils import TestCollectionCommon | ||
from test.operators.utils import ValueRanges | ||
|
||
|
||
class ModelFromAnotherOp(nn.Module): | ||
def __init__(self, operator): | ||
super().__init__() | ||
self.testname = "Element_wise_unary_operators_test_op_src_from_another_op" | ||
self.operator = operator | ||
|
||
def forward(self, x): | ||
xx = torch.add(x, x) | ||
return self.operator(xx) | ||
|
||
|
||
class ModelDirect(nn.Module): | ||
def __init__(self, operator): | ||
super().__init__() | ||
self.testname = "Element_wise_unary_operators_test_op_src_from_host" | ||
self.operator = operator | ||
|
||
def forward(self, x): | ||
return self.operator(x) | ||
|
||
|
||
class ModelConstEvalPass(nn.Module): | ||
def __init__(self, operator, shape: TensorShape): | ||
super().__init__() | ||
self.testname = "Element_wise_unary_operators_test_op_src_const_eval_pass" | ||
self.operator = operator | ||
self.c = (torch.rand(shape, requires_grad=False) - 0.5).detach() | ||
|
||
def forward(self, x): | ||
cc = self.operator(self.c) | ||
xx = self.operator(x) | ||
return torch.add(xx, cc) | ||
|
||
|
||
class TestVerification: | ||
|
||
MODEL_TYPES = { | ||
InputSource.FROM_ANOTHER_OP: ModelFromAnotherOp, | ||
InputSource.FROM_HOST: ModelDirect, | ||
InputSource.FROM_DRAM_QUEUE: ModelDirect, | ||
InputSource.CONST_EVAL_PASS: ModelConstEvalPass, | ||
} | ||
|
||
@classmethod | ||
def verify( | ||
cls, | ||
test_device: TestDevice, | ||
test_vector: TestVector, | ||
input_params: List[Dict] = [], | ||
warm_reset: bool = False, | ||
): | ||
|
||
input_source_flag: InputSourceFlags = None | ||
if test_vector.input_source in (InputSource.FROM_DRAM_QUEUE,): | ||
input_source_flag = InputSourceFlags.FROM_DRAM | ||
|
||
operator = getattr(torch, test_vector.operator) | ||
|
||
model_type = cls.MODEL_TYPES[test_vector.input_source] | ||
pytorch_model = ( | ||
model_type(operator, test_vector.input_shape) | ||
if test_vector.input_source in (InputSource.CONST_EVAL_PASS,) | ||
else model_type(operator) | ||
) | ||
|
||
input_shapes = tuple([test_vector.input_shape]) | ||
|
||
logger.trace(f"***input_shapes: {input_shapes}") | ||
|
||
VerifyUtils.verify( | ||
model=pytorch_model, | ||
test_device=test_device, | ||
input_shapes=input_shapes, | ||
input_params=input_params, | ||
input_source_flag=input_source_flag, | ||
dev_data_format=test_vector.dev_data_format, | ||
math_fidelity=test_vector.math_fidelity, | ||
pcc=test_vector.pcc, | ||
warm_reset=warm_reset, | ||
value_range=ValueRanges.SMALL, | ||
) | ||
|
||
|
||
class TestParamsData: | ||
|
||
__test__ = False | ||
|
||
test_plan: TestPlan = None | ||
|
||
|
||
class TestCollectionData: | ||
|
||
__test__ = False | ||
|
||
implemented = TestCollection( | ||
operators=["relu", "sqrt", "reciprocal", "sigmoid"], | ||
) | ||
|
||
|
||
TestParamsData.test_plan = TestPlan( | ||
verify=lambda test_device, test_vector: TestVerification.verify( | ||
test_device, | ||
test_vector, | ||
), | ||
collections=[ | ||
# Test operators with all shapes and input sources collection: | ||
TestCollection( | ||
operators=TestCollectionData.implemented.operators, | ||
input_sources=TestCollectionCommon.all.input_sources, | ||
input_shapes=TestCollectionCommon.all.input_shapes, | ||
), | ||
# Test Data formats collection: | ||
TestCollection( | ||
operators=TestCollectionData.implemented.operators, | ||
input_sources=TestCollectionCommon.single.input_sources, | ||
input_shapes=TestCollectionCommon.single.input_shapes, | ||
dev_data_formats=[ | ||
item | ||
for item in TestCollectionCommon.all.dev_data_formats | ||
if item not in TestCollectionCommon.single.dev_data_formats | ||
], | ||
math_fidelities=TestCollectionCommon.single.math_fidelities, | ||
), | ||
# Test Math fidelities collection: | ||
TestCollection( | ||
operators=TestCollectionData.implemented.operators, | ||
input_sources=TestCollectionCommon.single.input_sources, | ||
input_shapes=TestCollectionCommon.single.input_shapes, | ||
dev_data_formats=TestCollectionCommon.single.dev_data_formats, | ||
math_fidelities=TestCollectionCommon.all.math_fidelities, | ||
), | ||
], | ||
failing_rules=[ | ||
# Skip 2D shapes as we don't test them: | ||
TestCollection( | ||
criteria=lambda test_vector: len(test_vector.input_shape) in (2,), | ||
skip_reason=FailingReasons.NOT_IMPLEMENTED, | ||
), | ||
TestCollection( | ||
operators=["reciprocal"], | ||
input_sources=[InputSource.FROM_HOST], | ||
input_shapes=[(1, 2, 3, 4)], | ||
dev_data_formats=[ | ||
DataFormat.Int8, | ||
DataFormat.Int32, | ||
], | ||
math_fidelities=[MathFidelity.HiFi4], | ||
failing_reason=FailingReasons.DATA_MISMATCH, | ||
), | ||
TestCollection( | ||
operators=["sigmoid"], | ||
input_sources=[InputSource.FROM_HOST], | ||
input_shapes=[(1, 2, 3, 4)], | ||
dev_data_formats=[ | ||
DataFormat.RawUInt8, | ||
DataFormat.RawUInt16, | ||
DataFormat.RawUInt32, | ||
DataFormat.Int8, | ||
DataFormat.UInt16, | ||
DataFormat.Int32, | ||
], | ||
math_fidelities=[MathFidelity.HiFi4], | ||
failing_reason=FailingReasons.DATA_MISMATCH, | ||
), | ||
], | ||
) | ||
|
||
|
||
def get_test_plans() -> List[TestPlan]: | ||
return [ | ||
TestParamsData.test_plan, | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters