-
Notifications
You must be signed in to change notification settings - Fork 612
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'patch-op-names' into r0.1
- Loading branch information
Showing
35 changed files
with
1,735 additions
and
80 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
169 changes: 169 additions & 0 deletions
169
tensorflow_addons/custom_ops/image/cc/kernels/adjust_hsv_in_yiq_op.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,169 @@ | ||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#if GOOGLE_CUDA | ||
#define EIGEN_USE_GPU | ||
#endif // GOOGLE_CUDA | ||
|
||
#include <memory> | ||
|
||
#include "tensorflow/core/framework/register_types.h" | ||
#include "tensorflow/core/framework/tensor.h" | ||
#include "tensorflow/core/framework/tensor_shape.h" | ||
#include "tensorflow/core/lib/core/status.h" | ||
#include "tensorflow/core/platform/logging.h" | ||
#include "tensorflow/core/util/work_sharder.h" | ||
#include "tensorflow_addons/custom_ops/image/cc/kernels/adjust_hsv_in_yiq_op.h" | ||
|
||
namespace tensorflow { | ||
|
||
typedef Eigen::ThreadPoolDevice CPUDevice; | ||
typedef Eigen::GpuDevice GPUDevice; | ||
|
||
class AdjustHsvInYiqOpBase : public OpKernel { | ||
protected: | ||
explicit AdjustHsvInYiqOpBase(OpKernelConstruction* context) | ||
: OpKernel(context) {} | ||
|
||
struct ComputeOptions { | ||
const Tensor* input = nullptr; | ||
Tensor* output = nullptr; | ||
const Tensor* delta_h = nullptr; | ||
const Tensor* scale_s = nullptr; | ||
const Tensor* scale_v = nullptr; | ||
int64 channel_count = 0; | ||
}; | ||
|
||
virtual void DoCompute(OpKernelContext* context, | ||
const ComputeOptions& options) = 0; | ||
|
||
void Compute(OpKernelContext* context) override { | ||
const Tensor& input = context->input(0); | ||
const Tensor& delta_h = context->input(1); | ||
const Tensor& scale_s = context->input(2); | ||
const Tensor& scale_v = context->input(3); | ||
OP_REQUIRES(context, input.dims() >= 3, | ||
errors::InvalidArgument("input must be at least 3-D, got shape", | ||
input.shape().DebugString())); | ||
OP_REQUIRES(context, TensorShapeUtils::IsScalar(delta_h.shape()), | ||
errors::InvalidArgument("delta_h must be scalar: ", | ||
delta_h.shape().DebugString())); | ||
OP_REQUIRES(context, TensorShapeUtils::IsScalar(scale_s.shape()), | ||
errors::InvalidArgument("scale_s must be scalar: ", | ||
scale_s.shape().DebugString())); | ||
OP_REQUIRES(context, TensorShapeUtils::IsScalar(scale_v.shape()), | ||
errors::InvalidArgument("scale_v must be scalar: ", | ||
scale_v.shape().DebugString())); | ||
auto channels = input.dim_size(input.dims() - 1); | ||
OP_REQUIRES( | ||
context, channels == kChannelSize, | ||
errors::InvalidArgument("input must have 3 channels but instead has ", | ||
channels, " channels.")); | ||
|
||
Tensor* output = nullptr; | ||
OP_REQUIRES_OK(context, | ||
context->allocate_output(0, input.shape(), &output)); | ||
|
||
if (input.NumElements() > 0) { | ||
const int64 channel_count = input.NumElements() / channels; | ||
ComputeOptions options; | ||
options.input = &input; | ||
options.delta_h = &delta_h; | ||
options.scale_s = &scale_s; | ||
options.scale_v = &scale_v; | ||
options.output = output; | ||
options.channel_count = channel_count; | ||
DoCompute(context, options); | ||
} | ||
} | ||
}; | ||
|
||
template <class Device> | ||
class AdjustHsvInYiqOp; | ||
|
||
template <> | ||
class AdjustHsvInYiqOp<CPUDevice> : public AdjustHsvInYiqOpBase { | ||
public: | ||
explicit AdjustHsvInYiqOp(OpKernelConstruction* context) | ||
: AdjustHsvInYiqOpBase(context) {} | ||
|
||
void DoCompute(OpKernelContext* context, | ||
const ComputeOptions& options) override { | ||
const Tensor* input = options.input; | ||
Tensor* output = options.output; | ||
const int64 channel_count = options.channel_count; | ||
auto input_data = input->shaped<float, 2>({channel_count, kChannelSize}); | ||
const float delta_h = options.delta_h->scalar<float>()(); | ||
const float scale_s = options.scale_s->scalar<float>()(); | ||
const float scale_v = options.scale_v->scalar<float>()(); | ||
auto output_data = output->shaped<float, 2>({channel_count, kChannelSize}); | ||
float tranformation_matrix[kChannelSize * kChannelSize] = {0}; | ||
internal::compute_tranformation_matrix<kChannelSize * kChannelSize>( | ||
delta_h, scale_s, scale_v, tranformation_matrix); | ||
const int kCostPerChannel = 10; | ||
const DeviceBase::CpuWorkerThreads& worker_threads = | ||
*context->device()->tensorflow_cpu_worker_threads(); | ||
Shard(worker_threads.num_threads, worker_threads.workers, channel_count, | ||
kCostPerChannel, [&input_data, &output_data, &tranformation_matrix]( | ||
int64 start_channel, int64 end_channel) { | ||
// Applying projection matrix to input RGB vectors. | ||
const float* p = input_data.data() + start_channel * kChannelSize; | ||
float* q = output_data.data() + start_channel * kChannelSize; | ||
for (int i = start_channel; i < end_channel; i++) { | ||
for (int q_index = 0; q_index < kChannelSize; q_index++) { | ||
q[q_index] = 0; | ||
for (int p_index = 0; p_index < kChannelSize; p_index++) { | ||
q[q_index] += | ||
p[p_index] * | ||
tranformation_matrix[q_index + kChannelSize * p_index]; | ||
} | ||
} | ||
p += kChannelSize; | ||
q += kChannelSize; | ||
} | ||
}); | ||
} | ||
}; | ||
|
||
REGISTER_KERNEL_BUILDER( | ||
Name("AdjustHsvInYiq").Device(DEVICE_CPU).TypeConstraint<float>("T"), | ||
AdjustHsvInYiqOp<CPUDevice>); | ||
|
||
#if GOOGLE_CUDA | ||
template <> | ||
class AdjustHsvInYiqOp<GPUDevice> : public AdjustHsvInYiqOpBase { | ||
public: | ||
explicit AdjustHsvInYiqOp(OpKernelConstruction* context) | ||
: AdjustHsvInYiqOpBase(context) {} | ||
|
||
void DoCompute(OpKernelContext* ctx, const ComputeOptions& options) override { | ||
const int64 number_of_elements = options.input->NumElements(); | ||
if (number_of_elements <= 0) { | ||
return; | ||
} | ||
const float* delta_h = options.delta_h->flat<float>().data(); | ||
const float* scale_s = options.scale_s->flat<float>().data(); | ||
const float* scale_v = options.scale_v->flat<float>().data(); | ||
functor::AdjustHsvInYiqGPU()(ctx, options.channel_count, options.input, | ||
delta_h, scale_s, scale_v, options.output); | ||
} | ||
}; | ||
|
||
REGISTER_KERNEL_BUILDER( | ||
Name("AdjustHsvInYiq").Device(DEVICE_GPU).TypeConstraint<float>("T"), | ||
AdjustHsvInYiqOp<GPUDevice>); | ||
#endif | ||
|
||
} // namespace tensorflow |
Oops, something went wrong.