Skip to content

Commit

Permalink
add export proto to parquet example
Browse files Browse the repository at this point in the history
  • Loading branch information
alice-yin committed Apr 19, 2024
1 parent 4303a9b commit 54ad2a9
Show file tree
Hide file tree
Showing 10 changed files with 394 additions and 0 deletions.
21 changes: 21 additions & 0 deletions export_proto_to_parquet/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2023 temporal.io

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
59 changes: 59 additions & 0 deletions export_proto_to_parquet/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
# Temporal proto to parquet sample

This is an example workflow to convert exported file from proto to parquet file. The workflow is an hourly schedule

To use this code, make sure you have a [Temporal Cluster running](https://docs.temporal.io/docs/server/quick-install/) first.

Create a virtual environment and activate it. On macOS and Linux, run these commands:

```
python3 -m venv env
source env/bin/activate
```

On Windows, run these commands:

```
python -m venv env
env\Scripts\activate
```

With the virtual environment configured, install the Temporal SDK:

```
python -m pip install temporalio
python -m pip install pandas
python -m pip install pyarrow
python -m pip install boto3
```


Run the workflow:

```bash
python run_workflow.py
```

In another window, activate the virtual environment:

On macOS or Linux, run this command:

```
source env/bin/activate
```

On Windows, run this command:

```
python -m venv env
env\Scripts\activate
```


Then run the worker:


```bash
python run_worker.py
```

Empty file.
129 changes: 129 additions & 0 deletions export_proto_to_parquet/data_trans_activities.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
"""Module defines export s3 activities convert exported workflow history file from proto to parquet format."""

import json
import uuid

import boto3
import pandas as pd
import temporalio.api.export.v1 as export
from dataobject import DataTransAndLandActivitiyInput, GetObjectKeysActivityInput
from google.protobuf.json_format import MessageToJson
from temporalio import activity
from typing import List

class ExportS3Activities:
def __init__(self):
# Make sure you have the AWS credentials set up
self.s3 = boto3.client("s3")

@activity.defn
async def get_object_keys(
self, activity_input: GetObjectKeysActivityInput
) -> List[str]:
"""Function that list objects by key."""
response = self.s3.list_objects_v2(
Bucket=activity_input.bucket, Prefix=activity_input.path
)
object_keys = []
for obj in response.get("Contents", []):
object_keys.append(obj["Key"])

if len(object_keys) == 0:
raise FileNotFoundError(
f"No files found in {activity_input.bucket}/{activity_input.path}"
)

return object_keys

@activity.defn
async def data_trans_and_land(
self, activity_input: DataTransAndLandActivitiyInput
) -> str:
"""Function that convert proto to parquet and save to S3."""
key = activity_input.object_key
data = await self.get_data_from_object_key(activity_input.export_s3_bucket, key)
activity.logger.info("Convert proto to parquet for file: %s", key)
parquet_data = await self.convert_proto_to_parquet_flatten(data)
activity.logger.info("Finish transformation for file: %s", key)

return await self.save_to_sink(
parquet_data, activity_input.output_s3_bucket, activity_input.write_path
)

async def get_data_from_object_key(
self, bucket_name: str, object_key: str
) -> export.WorkflowExecutions:
"""Function that get object by key."""
v = export.WorkflowExecutions()
try:
data = self.s3.get_object(Bucket=bucket_name, Key=object_key)["Body"].read()
except Exception as e:
activity.logger.error(f"Error reading object: {e}")
raise e

v.ParseFromString(data)

return v

async def convert_proto_to_parquet_flatten(
self, wfs: export.WorkflowExecutions
) -> pd.DataFrame:
"""Function that convert flatten proto data to parquet."""
dfs = []
for wf in wfs.items:
start_attributes = wf.history.events[
0
].workflow_execution_started_event_attributes
histories = wf.history
json_str = MessageToJson(histories)
row = {
"WorkflowID": start_attributes.workflow_id,
"RunID": start_attributes.original_execution_run_id,
"Histories": json.loads(json_str),
}
dfs.append(pd.DataFrame([row]))

df = pd.concat(dfs, ignore_index=True)

rows_flatten = []
for _, row in df.iterrows():
wf_histories_raw = row["Histories"]["events"]
worfkow_id = row["WorkflowID"]
run_id = row["RunID"]

for history_event in wf_histories_raw:
row_flatten = pd.json_normalize(history_event, sep="_")

skip_name = ["payloads", "."]
columns_to_drop = [
col
for col in row_flatten.columns
for skip in skip_name
if skip in col
]
row_flatten.drop(columns_to_drop, axis=1, inplace=True)

row_flatten.insert(0, "WorkflowId", worfkow_id)
row_flatten.insert(1, "RunId", run_id)

rows_flatten.append(row_flatten)

df_flatten = pd.concat(rows_flatten, ignore_index=True)
return df_flatten

async def save_to_sink(
self, data: pd.DataFrame, s3_bucket: str, write_path: str
) -> str:
"""Function that save object to s3 bucket."""
write_bytes = data.to_parquet(None, compression="snappy", index=False)
s3 = boto3.client("s3")
uuid_name = uuid.uuid1()
file_name = f"{uuid_name}.parquet"
activity.logger.info("Writing to S3 bucket: %s", file_name)
try:
key = f"{write_path}/{file_name}"
s3.put_object(Bucket=s3_bucket, Key=key, Body=write_bytes)
return key
except Exception as e:
activity.logger.error(f"Error saving to sink: {e}")
raise e
23 changes: 23 additions & 0 deletions export_proto_to_parquet/dataobject.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
from dataclasses import dataclass


@dataclass
class GetObjectKeysActivityInput:
bucket: str
path: str


@dataclass
class DataTransAndLandActivitiyInput:
export_s3_bucket: str
object_key: str
output_s3_bucket: str
write_path: str


@dataclass
class ProtoToParquetWorkflowInput:
num_delay_hour: int
export_s3_bucket: str
namespace: str
output_s3_bucket: str
37 changes: 37 additions & 0 deletions export_proto_to_parquet/run_worker.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
"""Module defines temporal worker."""

import asyncio

from shared import DATA_TRANSFORMATION_TASK_QUEUE_NAME
from temporalio.client import Client
from temporalio.worker import Worker
from temporalio.worker.workflow_sandbox import (
SandboxedWorkflowRunner,
SandboxRestrictions,
)
from workflows import ProtoToParquet

from export_proto_to_parquet.activities import ExportS3Activities


async def main() -> None:
"""Main worker function."""
# Create client connected to server at the given address
client: Client = await Client.connect("localhost:7233", namespace="default")

# Run the worker
s3_activities = ExportS3Activities()
worker: Worker = Worker(
client,
task_queue=DATA_TRANSFORMATION_TASK_QUEUE_NAME,
workflows=[ProtoToParquet],
activities=[s3_activities.get_object_keys, s3_activities.data_trans_and_land],
workflow_runner=SandboxedWorkflowRunner(
restrictions=SandboxRestrictions.default.with_passthrough_modules("boto3")
),
)
await worker.run()


if __name__ == "__main__":
asyncio.run(main())
52 changes: 52 additions & 0 deletions export_proto_to_parquet/run_workflow.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
"""Module defines run temporal workflow."""

import asyncio
import traceback
from datetime import datetime, timedelta

from dataobject import ProtoToParquetWorkflowInput
from shared import DATA_TRANSFORMATION_TASK_QUEUE_NAME, WORKFLOW_ID_PREFIX
from temporalio.client import (
Client,
Schedule,
ScheduleActionStartWorkflow,
ScheduleIntervalSpec,
ScheduleSpec,
WorkflowFailureError,
)
from workflows import ProtoToParquet


async def main() -> None:
"""Main function to run temporal workflow."""
# Create client connected to server at the given address
client: Client = await Client.connect("localhost:7233", namespace="default")
# TODO: update s3_bucket and namespace to the actual name
wf_input = ProtoToParquetWorkflowInput(
num_delay_hour=2,
export_s3_bucket="test-input-bucket",
namespace="test.namespace",
output_s3_bucket="test-output-bucket",
)

try:
await client.create_schedule(
"hourly-proto-to-parquet-wf-schedule",
Schedule(
action=ScheduleActionStartWorkflow(
ProtoToParquet.run,
wf_input,
id=f"{WORKFLOW_ID_PREFIX}-{datetime.now()}",
task_queue=DATA_TRANSFORMATION_TASK_QUEUE_NAME,
),
spec=ScheduleSpec(
intervals=[ScheduleIntervalSpec(every=timedelta(hours=1))]
),
),
)
except WorkflowFailureError:
print("Got exception: ", traceback.format_exc())


if __name__ == "__main__":
asyncio.run(main())
2 changes: 2 additions & 0 deletions export_proto_to_parquet/shared.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
DATA_TRANSFORMATION_TASK_QUEUE_NAME = "DATA_TRANSFORMATION_TASK_QUEUE"
WORKFLOW_ID_PREFIX = "proto-to-parquet"
67 changes: 67 additions & 0 deletions export_proto_to_parquet/workflows.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
"""Module defines workflows convert exported workflow history file from proto to parquet format."""

from datetime import timedelta

from dataobject import ProtoToParquetWorkflowInput
from temporalio import workflow
from temporalio.common import RetryPolicy
from temporalio.exceptions import ActivityError

with workflow.unsafe.imports_passed_through():
from export_proto_to_parquet.data_trans_activities import (
DataTransAndLandActivitiyInput,
ExportS3Activities,
GetObjectKeysActivityInput,
)


@workflow.defn
class ProtoToParquet:
"""Proto to parquet workflow."""

@workflow.run
async def run(self, workflow_input: ProtoToParquetWorkflowInput) -> str:
"""Run proto to parquet workflow."""
retry_policy = RetryPolicy(
maximum_attempts=10, maximum_interval=timedelta(seconds=5)
)

# Read from export S3 bucket and given at least 2 hour delay to ensure the file has been uploaded
read_time = workflow.now() - timedelta(hours=workflow_input.num_delay_hour)
common_path = f"{workflow_input.namespace}/{read_time.year}/{read_time.month:02}/{read_time.day:02}/{read_time.hour:02}/00"
path = f"temporal-workflow-history/export/{common_path}"
get_object_keys_input = GetObjectKeysActivityInput(
workflow_input.export_s3_bucket, path
)

# Read Input File
object_keys_output = await workflow.execute_activity_method(
ExportS3Activities.get_object_keys,
get_object_keys_input,
start_to_close_timeout=timedelta(minutes=5),
retry_policy=retry_policy,
)

write_path = f"temporal-workflow-history/parquet/{common_path}"

try:
# Could spin up multiple threads to process files in parallel
for key in object_keys_output:
data_trans_and_land_input = DataTransAndLandActivitiyInput(
workflow_input.export_s3_bucket,
key,
workflow_input.output_s3_bucket,
write_path,
)
# Convert proto to parquet and save to S3
await workflow.execute_activity_method(
ExportS3Activities.data_trans_and_land,
data_trans_and_land_input,
start_to_close_timeout=timedelta(minutes=10),
retry_policy=retry_policy,
)
except ActivityError as output_err:
workflow.logger.error(f"Data transformation failed: {output_err}")
raise output_err

return write_path
Loading

0 comments on commit 54ad2a9

Please sign in to comment.