Skip to content

Commit

Permalink
CUDA: fixed tensor cores not being used on RDNA3 (ggerganov#4697)
Browse files Browse the repository at this point in the history
  • Loading branch information
JohannesGaessler authored Dec 30, 2023
1 parent 24a447e commit 39d8bc7
Showing 1 changed file with 24 additions and 23 deletions.
47 changes: 24 additions & 23 deletions ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -119,10 +119,29 @@
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define CC_VOLTA 700
#define CC_OFFSET_AMD 1000000
#define CC_RDNA1 (CC_OFFSET_AMD + 1010)
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
#define CC_RDNA3 (CC_OFFSET_AMD + 1100)

#define GGML_CUDA_MAX_NODES 8192

// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
// - 7B quantum model: +100-200 MB
// - 13B quantum model: +200-400 MB
//
//#define GGML_CUDA_FORCE_MMQ

// TODO: improve this to be correct for more hardware
// for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
#if !defined(GGML_CUDA_FORCE_MMQ)
#define CUDA_USE_TENSOR_CORES
#endif

// max batch size to use MMQ kernels when tensor cores are available
#define MMQ_MAX_BATCH_SIZE 32

#if defined(GGML_USE_HIPBLAS)
#define __CUDA_ARCH__ 1300

Expand Down Expand Up @@ -189,23 +208,6 @@ static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
}
#endif // defined(GGML_USE_HIPBLAS)

// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
// - 7B quantum model: +100-200 MB
// - 13B quantum model: +200-400 MB
//
//#define GGML_CUDA_FORCE_MMQ

// TODO: improve this to be correct for more hardware
// for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
#if !defined(GGML_CUDA_FORCE_MMQ) && (!defined(GGML_USE_HIPBLAS) || defined(RDNA3))
#define CUDA_USE_TENSOR_CORES
#endif

// max batch size to use MMQ kernels when tensor cores are available
#define MMQ_MAX_BATCH_SIZE 32

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
Expand Down Expand Up @@ -8661,13 +8663,12 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
}

#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
const bool fp16_performance_good = true;

#ifdef RDNA3
const bool use_mul_mat_q = false;
#else
const bool use_mul_mat_q = true;
#endif // RDNA3
const bool fp16_performance_good = min_compute_capability >= CC_RDNA1;
bool use_mul_mat_q = ggml_is_quantized(src0->type);
#ifdef CUDA_USE_TENSOR_CORES
use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3;
#endif // CUDA_USE_TENSOR_CORES

#else

Expand Down

0 comments on commit 39d8bc7

Please sign in to comment.