Skip to content

suyashdb/yapf

 
 

Repository files navigation

YAPF

Build status

Most of the current formatters for Python --- e.g., autopep8, and pep8ify --- are made to remove lint errors from code. This has some obvious limitations. For instance, code that conforms to the PEP 8 guidelines may not be reformatted. But it doesn't mean that the code looks good.

YAPF takes a different approach. It's based off of 'clang-format', developed by Daniel Jasper. In essence, the algorithm takes the code and reformats it to the best formatting that conforms to the style guide, even if the original code didn't violate the style guide. The idea is also similar to the 'gofmt' tool for the Go programming language: end all holy wars about formatting - if the whole code base of a project is simply piped through YAPF whenever modifications are made, the style remains consistent throughout the project and there's no point arguing about style in every code review.

The ultimate goal is that the code YAPF produces is as good as the code that a programmer would write if they were following the style guide. It takes away some of the drudgery of maintaining your code.

We consider YAPF to be "alpha" quality at this time. Therefore, we don't yet support official releases to PyPI and the most stable and correct version is at the tip of the master branch in this repository. We plan to make a first beta release (including to PyPI) in the next few weeks.

If you intend to use YAPF as a command-line tool rather than as a library, installation is not necessary. YAPF supports being run as a directory by the Python interpreter. If you cloned/unzipped yapf into DIR, it's possible to run:

$ PYTHONPATH=DIR python DIR/yapf [options] ...

YAPF supports Python 2.7 and 3.4+.

YAPF requires the code it formats to be valid Python for the version YAPF itself runs under. Therefore, if you format Python 3 code with YAPF, run YAPF itself under Python 3 (and similarly for Python 2).

Options:

usage: yapf [-h] [--style STYLE] [--noverify] [-d | -i] [-l START-END | -r] ...

Formatter for Python code.

positional arguments:
  files

optional arguments:
  -h, --help            show this help message and exit
  --style STYLE         specify formatting style: either a style name (for
                        example "pep8" or "google"), or the name of a file
                        with style settings. pep8 is the default.
  --noverify            do not verify refomatted code for syntax errors
  -d, --diff            print the diff for the fixed source
  -i, --in-place        make changes to files in place
  -l START-END, --lines START-END
                        range of lines to reformat, one-based
  -r, --recursive       run recursively over directories

Note

After reformatting a chunk of code, YAPF verifies that it's correct (can be parsed by Python itself). This means that if you're reformatting Python 3 code, it's best to run YAPF itself under Python 3. The same goes for Python 2.

It's possible to disable verification with the --noverify flag.

The formatting style used by YAPF is configurable and there are many "knobs" that can be used to tune how YAPF does formatting. See the style.py module for the full list.

To control the style, run YAPF with the --style argument. It accepts either one of the predefined styles (currently "pep8" or "google"), or a path to a configuration file that specifies the desired style. The file is a simple listing of (case-insensitive) key = value pairs with a [style] heading. For example:

[style]
based_on_style = pep8
spaces_before_comment = 4
split_before_logical_operator = true

The based_on_style setting determines which of the predefined styles this custom style is based on (think of it like subclassing).

An example of the type of formatting that YAPF can do, it will take this ugly code:

x = {  'a':37,'b':42,

'c':927}

y = 'hello ''world'
z = 'hello '+'world'
a = 'hello {}'.format('world')
class foo  (     object  ):
  def f    (self   ):
    return       37*-+2
  def g(self, x,y=42):
      return y
def f  (   a ) :
  return      37+-+a[42-x :  y**3]

and reformat it into:

x = {'a': 37, 'b': 42, 'c': 927}

y = 'hello ' 'world'
z = 'hello ' + 'world'
a = 'hello {}'.format('world')


class foo(object):
    def f(self):
        return 37 * -+2

    def g(self, x, y=42):
        return y


def f(a):
    return 37 + -+a[42 - x:y ** 3]

YAPF tries very hard to get the formatting correct. But for some code, it won't be as good as hand-formatting. In particular, large data literals may become horribly disfigured under YAPF.

The reason for this is manifold. But in essence YAPF is simply a tool to help with development. It will format things to coincide with the style guide, but that may not equate with readability.

What can be done to alleviate this situation is to indicate regions YAPF should ignore when reformatting something:

# yapf: disable
FOO = {
    # ... some very large, complex data literal.
}

BAR = [
    # ... another large data literal.
]
# yapf: enable

You can also disable formatting for a single literal like this:

BAZ = {
    [1, 2, 3, 4],
    [5, 6, 7, 8],
    [9, 10, 11, 12]
}  # yapf: disable

We wanted to use clang-format's reformatting algorithm. It's very powerful and designed to come up with the best formatting possible. Existing tools were created with different goals in mind, and would require extensive modifications to convert to using clang-format's algorithm.

Please do! YAPF was designed to be used as a library as well as a command line tool. This means that a tool or IDE plugin is free to use YAPF.

The main data structure in YAPF is the UnwrappedLine object. It holds a list of FormatTokens, that we would want to place on a single line if there were no column limit. An exception being a comment in the middle of an expression statement will force the line to be formatted on more than one line. The formatter works on one UnwrappedLine object at a time.

An UnwrappedLine typically won't affect the formatting of lines before or after it. There is a part of the algorithm that may join two or more UnwrappedLines into one line. For instance, an if-then statement with a short body can be placed on a single line:

if a == 42: continue

YAPF's formatting algorithm creates a weighted tree that acts as the solution space for the algorithm. Each node in the tree represents the result of a formatting decision --- i.e., whether to split or not to split before a token. Each formatting decision has a cost associated with it. Therefore, the cost is realized on the edge between two nodes. (In reality, the weighted tree doesn't have separate edge objects, so the cost resides on the nodes themselves.)

For example, take the following Python code snippet. For the sake of this example, assume that line (1) violates the column limit restriction and needs to be reformatted.

def xxxxxxxxxxx(aaaaaaaaaaaa, bbbbbbbbb, cccccccc, dddddddd, eeeeee):  # 1
    pass                                                               # 2

For line (1), the algorithm will build a tree where each node (a FormattingDecisionState object) is the state of the line at that token given the decision to split before the token or not. Note: the FormatDecisionState objects are copied by value so each node in the graph is unique and a change in one doesn't affect other nodes.

Heuristics are used to determine the costs of splitting or not splitting. Because a node holds the state of the tree up to a token's insertion, it can easily determine if a splitting decision will violate one of the style requirements. For instance, the heuristic is able to apply an extra penalty to the edge when not splitting between the previous token and the one being added.

There are some instances where we will never want to split the line, because doing so will always be detrimental (i.e., it will require a backslash-newline, which is very rarely desirable). For line (1), we will never want to split the first three tokens: def, xxxxxxxxxxx, and (. Nor will we want to split between the ) and the : at the end. These regions are said to be "unbreakable." This is reflected in the tree by there not being a "split" decision (left hand branch) within the unbreakable region.

Now that we have the tree, we determine what the "best" formatting is by finding the path through the tree with the lowest cost.

And that's it!


YAPF is not an official Google product (experimental or otherwise), it is just code that happens to be owned by Google.

About

A formatter for Python files

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.9%
  • Vim Script 0.1%