Skip to content

Commit

Permalink
Rewrite of ergm.allstats():
Browse files Browse the repository at this point in the history
* The C implementation now uses khash to track the frequencies of statistics vectors.
* This obviates the need to have a fixed hash table size, since it can grow dynamically.
* It can now accept a constraints= argument and enforce dyad-independent constraints.
* Some documentation improvements, including a merge with documentation of ergm.exact().
* ergm.exact() now also takes a constraints= argument and has had its implementation cleaned up.

fixes #540
  • Loading branch information
krivit committed Sep 30, 2024
1 parent 7edad3d commit 021c1c0
Show file tree
Hide file tree
Showing 4 changed files with 197 additions and 410 deletions.
218 changes: 59 additions & 159 deletions R/ergm.allstats.R
Original file line number Diff line number Diff line change
Expand Up @@ -15,238 +15,138 @@
#=========================================================================



##########################################################################
# The <ergm.allstats> function visits every possible network via the
# recursive algorithm in <AllStatistics.C> and tabulates the unique
# statistics.
#
# --PARAMETERS--
# formula: a formula of the form 'nw ~ modelterm(s)'
# zeroobs: whether the statistics should be shifted by the observed
# stats (T or F); default = TRUE
# force : whether to force the calculation of the statistics, despite
# the "large" size of the network (T or F). The network is
# specified by 'formula' and currently "large" means an
# undirected network of size > 8 or directed with size > 6;
# default = FALSE
# maxNumChangeStatVectors: the maximum number of unique vectors of
# statistics that may be returned; if the number of unique
# stats vectors exceeds this count, an ERROR will occur;
# default = 2^16
# ... : extra arguments passed by <ergm.exact>; all will be ignored
#
# --RETURNED--
# NULL: if the network is too "large" and 'force'=FALSE, otherwise
# a list with 2 following components:
# weights: the proportion of networks with the statistics given in
# the 'statmat'
# statmat: the unique vectors of statistics, rowbound
#
##########################################################################



#' Calculate all possible vectors of statistics on a network for an ERGM
#'
#' \code{ergm.allstats} produces a matrix of network statistics for an
#' arbitrary \code{statnet} exponential-family random graph model. One
#' possible use for this function is to calculate the exact loglikelihood
#' function for a small network via the \code{\link{ergm.exact}} function.
#' \code{ergm.allstats} calculates the sufficient statistics of an
#' ERGM over the network's sample space.
#'
#' The mechanism for doing this is a recursive algorithm, where the number of
#' levels of recursion is equal to the number of possible dyads that can be
#' changed from 0 to 1 and back again. The algorithm starts with the network
#' passed in \code{formula}, then recursively toggles each edge twice so that
#' every possible network is visited.
#'
#' \code{ergm.allstats} should only be used for small networks, since the
#' number of possible networks grows extremely fast with the number of nodes.
#' An error results if it is used on a directed network of more than 6 nodes or
#' an undirected network of more than 8 nodes; use \code{force=TRUE} to
#' override this error.
#'
#' @param formula an \code{\link{formula}} object of the form \code{y ~ <model
#' terms>}, where \code{y} is a network object or a matrix that can be coerced
#' to a \code{\link[network]{network}} object. For the details on the possible
#' \code{<model terms>}, see \code{\link{ergmTerm}}. To create a
#' \code{\link[network]{network}} object in , use the \code{network()}
#' function, then add nodal attributes to it using the \code{\%v\%} operator if
#' necessary.
#' `ergm.allstats()` and `ergm.exact()` should only be used for small
#' networks, since the number of possible networks grows extremely
#' fast with the number of nodes. An error results if it is used on a
#' network with more than 31 free dyads, which corresponds to a
#' directed network of more than 6 nodes or an undirected network of
#' more than 8 nodes; use \code{force=TRUE} to override this error.
#'
#' @param formula,constraints,constraints.obs An ERGM formula and
#' (optionally) a constraint specification formulas. See
#' [ergm()]. This function supports only dyad-independent
#' constraints.
#' @param zeroobs Logical: Should the vectors be centered so that the network
#' passed in the \code{formula} has the zero vector as its statistics?
#' @param force Logical: Should the algorithm be run even if it is determined
#' that the problem may be very large, thus bypassing the warning message that
#' normally terminates the function in such cases?
#' @param maxNumChangeStatVectors Maximum possible number of distinct values of
#' the vector of statistics. It's good to use a power of 2 for this.
#' @param \dots further arguments; not currently used.
#' @return Returns a list object with these two elements:
#' @param \dots further arguments, passed to [ergm_mode()].
#' @return `ergm.allstats()` returns a list object with these two elements:
#' \item{weights}{integer of counts, one for each row of \code{statmat} telling
#' how many networks share the corresponding vector of statistics.}
#' \item{statmat}{matrix in which each row is a unique vector of statistics.}
#' @seealso \code{\link{ergm.exact}}
#' @keywords models
#' @examples
#'
#' # Count by brute force all the edge statistics possible for a 7-node
#' # undirected network
#' mynw <- network(matrix(0,7,7),dir=FALSE)
#' mynw <- network.initialize(7, dir = FALSE)
#' system.time(a <- ergm.allstats(mynw~edges))
#'
#' # Summarize results
#' rbind(t(a$statmat),a$weights)
#' rbind(t(a$statmat), .freq. = a$weights)
#'
#' # Each value of a$weights is equal to 21-choose-k,
#' # where k is the corresponding statistic (and 21 is
#' # the number of dyads in an 7-node undirected network).
#' # Here's a check of that fact:
#' as.vector(a$weights - choose(21, t(a$statmat)))
#'
#' # Simple ergm.exact outpuf for this network.
#' # We know that the loglikelihood for my empty 7-node network
#' # should simply be -21*log(1+exp(eta)), so we may check that
#' # the following two values agree:
#' -21*log(1+exp(.1234))
#' ergm.exact(.1234, mynw~edges, statmat=a$statmat, weights=a$weights)
#'
#' # Dyad-independent constraints are also supported:
#' system.time(a <- ergm.allstats(mynw~edges, constraints = ~fixallbut(cbind(1:2,2:3))))
#' rbind(t(a$statmat), .freq. = a$weights)
#'
#' @export ergm.allstats
ergm.allstats <- function(formula, zeroobs = TRUE, force = FALSE,
maxNumChangeStatVectors = 2^16, ...)
ergm.allstats <- function(formula, constraints=~., zeroobs = TRUE, force = FALSE, ...)
{
on.exit(ergm_Cstate_clear())
on.exit(allstats_workspace_clear(), add=TRUE)

# Initialization stuff
nw <- ergm.getnetwork(formula)
tmp <- .handle.auto.constraints(nw, constraints)
nw <- tmp$nw; conterms <- tmp$conterms
conlist <- ergm_conlist(conterms, nw)
if(!is.dyad.independent(conlist)) stop("Only dyadic constraints are supported.")
fd <- as.rlebdm(conlist)
m <- ergm_model(formula, nw, ...)

# Check for networks that are too large. Pretty unsophisticated check for now.
if ((network.size(nw) > 8 && !is.directed(nw)) || (network.size(nw) > 6 && is.directed(nw))) {
warning("Network may be too large to calculate all possible change statistics",
immediate.=TRUE)
if (!force) {
cat ("Use 'force=TRUE' to proceed with this calculation.\n")
return(NULL)
}
# Check for networks that are too large (based on the number of free dyads).
if (sum(fd) > 31) { # TODO: Make tunable.
if(force) warning("Network may be too large to calculate all possible change statistics.",
immediate.=TRUE)
else stop("Network may be too large to calculate all possible change statistics. Use ", sQuote("force=TRUE")," to proceed with this calculation.")
}

# Calculate the statistics relative to the current network using recursive C code
z <- .Call("AllStatistics",
ergm_state(nw, model=m),
# Allstats settings
as.integer(maxNumChangeStatVectors),
PACKAGE="ergm")
nz <- z[[2]] > 0
weights <- z[[2]][nz]
statmat <- matrix(z[[1]], ncol=nparam(m,canonical=TRUE), byrow=TRUE)[nz, , drop=FALSE]
as.double(to_ergm_Cdouble(fd)),
PACKAGE="ergm")
weights <- z$weights
statmat <- z$stats

# Add in observed statistics if they're not supposed to be zero
if (!zeroobs) {
obsstats <- summary(m, nw)
statmat <- sweep(statmat, 2, obsstats, '+')
statmat <- statmat + obsstats
}
statmat <- t(statmat)

colnames(statmat) <- param_names(m, TRUE)
list(weights=weights, statmat=statmat)
}

allstats_workspace_clear <- function(){
.Call("allstats_workspace_free", PACKAGE="ergm")
}


##########################################################################
# The <ergm.exact> function computes the exact log-likelihood of a
# given vector of coefficients, by use of the <ergm.allstats> function.
#
# --PARAMETERS--
# eta : a vector of coefficients for the model terms given in
# 'formula'
# formula: a formula of the form 'nw ~ modelterm(s)'
# statmat: the 'statmat' returned by <ergm.allstats>. This saves
# repeatedly calculating 'statmat' in the event that
# <ergm.exact> is called multiple times. If using this
# approach, 'zeroobs' should be TRUE, else the loglikelihood
# will be shifted by the value eta %*% observed stats;
# default=NULL
# weights: the 'weights' returned by <ergm.allstats>; these are used
# in conjuction with 'statmat' to avoid repeated calculations;
# default=NULL
# ... : additional arguments passed to <ergm.exact> that will be
# ignored
#
# --RETURNED--
# the exact log-likelihood at eta for the given formula IF the value
# returned by <ergm.allstats> is non-NULL
##########################################################################



#' Calculate the exact loglikelihood for an ERGM
#'
#' \code{ergm.exact} calculates the exact loglikelihood, evaluated at
#' \code{eta}, for the \code{statnet} exponential-family random graph model
#' represented by \code{formula}.
#'
#' \code{ergm.exact} should only be used for small networks, since the number
#' of possible networks grows extremely fast with the number of nodes. An
#' error results if it is used on a directed network of more than 6 nodes or an
#' undirected network of more than 8 nodes; use \code{force=TRUE} to override
#' this error.
#'
#' In case this function is to be called repeatedly, for instance by an
#' optimization routine, it is preferable to call \code{\link{ergm.allstats}}
#' @rdname ergm.allstats
#'
#' @description \code{ergm.exact()} uses \code{ergm.allstats()} to calculate the exact loglikelihood, evaluated at
#' \code{eta}.
#'
#' @details
#' In case \code{ergm.exact()} is to be called repeatedly, for instance by an
#' optimization routine, it is preferable to call `ergm.allstats()`
#' first, then pass \code{statmat} and \code{weights} explicitly to avoid
#' repeatedly calculating these objects.
#'
#' @param eta vector of canonical parameter values at which the loglikelihood
#' should be evaluated.
#' @param formula an \code{link{formula}} object of the form \code{y ~ <model
#' terms>}, where \code{y} is a network object or a matrix that can be coerced
#' to a \code{\link[network]{network}} object. For the details on the possible
#' \code{<model terms>}, see \code{\link{ergmTerm}}. To create a
#' \code{\link[network]{network}} object in , use the \code{network()}
#' function, then add nodal attributes to it using the \code{\%v\%} operator if
#' necessary.
#' @param statmat if NULL, call \code{\link{ergm.allstats}} to generate all
#' possible graph statistics for the networks in this model.
#' @param weights In case \code{statmat} is not \code{NULL}, this should be the
#' vector of counts corresponding to the rows of \code{statmat}. If
#' \code{statmat} is \code{NULL}, this is generated by the call to
#' \code{\link{ergm.allstats}}.
#' @param \dots further arguments; not currently used.
#' @return Returns the value of the exact loglikelihood, evaluated at
#' \code{eta}, for the \code{statnet} exponential-family random graph model
#' represented by \code{formula}.
#' @seealso \code{\link{ergm.allstats}}
#' @param statmat,weights outputs from `ergm.allstats()`: if passed, used in lieu of running it.
#' @return `ergm.exact()` returns the exact value of the loglikelihood, evaluated at
#' \code{eta}.
#' @keywords models
#' @examples
#'
#' # Count by brute force all the edge statistics possible for a 7-node
#' # undirected network
#' mynw <- network(matrix(0,7,7),dir=FALSE)
#' system.time(a <- ergm.allstats(mynw~edges))
#'
#' # Summarize results
#' rbind(t(a$statmat),a$weights)
#'
#' # Each value of a$weights is equal to 21-choose-k,
#' # where k is the corresponding statistic (and 21 is
#' # the number of dyads in an 7-node undirected network).
#' # Here's a check of that fact:
#' as.vector(a$weights - choose(21, t(a$statmat)))
#'
#' # Simple ergm.exact outpuf for this network.
#' # Simple ergm.exact output for this network.
#' # We know that the loglikelihood for my empty 7-node network
#' # should simply be -21*log(1+exp(eta)), so we may check that
#' # the following two values agree:
#' -21*log(1+exp(.1234))
#' ergm.exact(.1234, mynw~edges, statmat=a$statmat, weights=a$weights)
#'
#' @export ergm.exact
ergm.exact <- function(eta, formula, statmat=NULL, weights=NULL, ...) {
ergm.exact <- function(eta, formula, constraints = ~., statmat=NULL, weights=NULL, ...) {
if (is.null(statmat)) {
alst <- ergm.allstats(formula, zeroobs=TRUE, ...)
return(-log(alst$weights %*% exp(as.matrix(alst$statmat) %*% eta)))
} else {
return(-log(weights %*% exp(as.matrix(statmat) %*% eta)))
alst <- ergm.allstats(formula, constraints, zeroobs=TRUE, ...)
statmat <- alst$statmat; weights <- alst$weights
}

-log(weights %*% exp(as.matrix(statmat) %*% eta))
}

Loading

0 comments on commit 021c1c0

Please sign in to comment.