forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[i18n-ZH] Translated fast_tokenizers.md to Chinese (huggingface#26910)
docs: translate fast_tokenizers into Chinese
- Loading branch information
Showing
2 changed files
with
72 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
<!--Copyright 2020 The HuggingFace Team. All rights reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | ||
the License. You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | ||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | ||
specific language governing permissions and limitations under the License. | ||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be | ||
rendered properly in your Markdown viewer. | ||
--> | ||
|
||
# 使用 🤗 Tokenizers 中的分词器 | ||
|
||
[`PreTrainedTokenizerFast`] 依赖于 [🤗 Tokenizers](https://huggingface.co/docs/tokenizers) 库。从 🤗 Tokenizers 库获得的分词器可以被轻松地加载到 🤗 Transformers 中。 | ||
|
||
在了解具体内容之前,让我们先用几行代码创建一个虚拟的分词器: | ||
|
||
```python | ||
>>> from tokenizers import Tokenizer | ||
>>> from tokenizers.models import BPE | ||
>>> from tokenizers.trainers import BpeTrainer | ||
>>> from tokenizers.pre_tokenizers import Whitespace | ||
|
||
>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]")) | ||
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]) | ||
|
||
>>> tokenizer.pre_tokenizer = Whitespace() | ||
>>> files = [...] | ||
>>> tokenizer.train(files, trainer) | ||
``` | ||
|
||
现在,我们拥有了一个针对我们定义的文件进行训练的分词器。我们可以在当前运行时中继续使用它,或者将其保存到一个 JSON 文件以供将来重复使用。 | ||
|
||
## 直接从分词器对象加载 | ||
|
||
让我们看看如何利用 🤗 Transformers 库中的这个分词器对象。[`PreTrainedTokenizerFast`] 类允许通过接受已实例化的 *tokenizer* 对象作为参数,进行轻松实例化: | ||
|
||
```python | ||
>>> from transformers import PreTrainedTokenizerFast | ||
|
||
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer) | ||
``` | ||
|
||
现在可以使用这个对象,使用 🤗 Transformers 分词器共享的所有方法!前往[分词器页面](main_classes/tokenizer)了解更多信息。 | ||
|
||
## 从 JSON 文件加载 | ||
|
||
为了从 JSON 文件中加载分词器,让我们先保存我们的分词器: | ||
|
||
```python | ||
>>> tokenizer.save("tokenizer.json") | ||
``` | ||
|
||
我们保存此文件的路径可以通过 `tokenizer_file` 参数传递给 [`PreTrainedTokenizerFast`] 初始化方法: | ||
|
||
```python | ||
>>> from transformers import PreTrainedTokenizerFast | ||
|
||
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json") | ||
``` | ||
|
||
现在可以使用这个对象,使用 🤗 Transformers 分词器共享的所有方法!前往[分词器页面](main_classes/tokenizer)了解更多信息。 |