Skip to content

TensorFlow2.x implementation of Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization

License

Notifications You must be signed in to change notification settings

srihari-humbarwadi/adain-tensorflow2.x

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

77 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AdaIN

This work is supported by Cloud TPUs from Google's TPU Research Cloud (TRC)

Getting started

  • Download the coco2017 and wikiart datasets
  • Generate the tfrecords for training and validation.
python3 -m adain.dataset_utils.create_tfrecords --image_paths_pattern coco/train2017/* --prefix coco-train  --output_dir tfrecords
python3 -m adain.dataset_utils.create_tfrecords --image_paths_pattern coco/val2017/* --prefix coco-val  --output_dir tfrecords
python3 -m adain.dataset_utils.create_tfrecords --image_paths_pattern wikiart/train/* --prefix wikiart-train  --output_dir tfrecords
  • Start training with:
    • python3 -m adain.main --config_path configs/coco-wikiart.json
  • To export saved_model, use
    • python3 -m adain.export --config_path configs/coco-wikiart.json

Inference

content_images = glob('assets/images/content/*')
style_images = glob('assets/images/style/*')

saved_model = tf.saved_model.load('export')
inference_fn = saved_model.signatures['serving_default']

content_image = read_image(content_images[3])
style_image = read_image(style_images[16])

alpha = tf.constant(1.0)
resize = tf.constant(True)

serving_input = {
    'style_images': style_image,
    'content_images': content_image,
    'alpha': alpha,
    'resize': resize
}

stylized_image = inference_fn(**serving_input)['stylized_images'][0]
result = prepare_visualization_image(
    content_image[0], 
    style_image[0], 
    stylized_image, figsize=(20, 5))

imshow(result, figsize=(20, 10))

Results

1.png 2.png 3.png 4.png 5.png

Controlling Content-Style tradeoff by varying alpha



Training Logs

tensorboard.png

Tensorboard.Dev

tensorboard.dev





@article{DBLP:journals/corr/HuangB17,
  author    = {Xun Huang and
               Serge J. Belongie},
  title     = {Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization},
  journal   = {CoRR},
  volume    = {abs/1703.06868},
  year      = {2017},
  url       = {http://arxiv.org/abs/1703.06868},
  archivePrefix = {arXiv},
  eprint    = {1703.06868},
  timestamp = {Mon, 13 Aug 2018 16:46:12 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/HuangB17.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

About

TensorFlow2.x implementation of Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published