Skip to content

Commit

Permalink
JP-3583: Long integrations truncation in ramp fitting (#251)
Browse files Browse the repository at this point in the history
* Update utils.py

* Update test_ramp_fitting.py

* Update test_ramp_fitting.py

* update test

* Update CHANGES.rst

* Update CHANGES.rst

---------

Co-authored-by: Howard Bushouse <[email protected]>
  • Loading branch information
mwregan2 and hbushouse authored Mar 21, 2024
1 parent def387c commit 72de44e
Show file tree
Hide file tree
Showing 3 changed files with 70 additions and 3 deletions.
7 changes: 7 additions & 0 deletions CHANGES.rst
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,13 @@ ramp_fitting
Bug Fixes
---------

ramp_fitting
~~~~~~~~~~~~

- Changed the data type of three variables that are used in measuring
the jump free segments of integrations. The variables were uint8 and
they would yield wrong results for integrations with more than 256
groups. [#251]
Other
-----

Expand Down
6 changes: 3 additions & 3 deletions src/stcal/ramp_fitting/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -520,10 +520,10 @@ def calc_slope_vars(ramp_data, rn_sect, gain_sect, gdq_sect, group_time, max_seg
gdq_2d_nan[np.bitwise_and(gdq_2d, ramp_data.flags_saturated).astype(bool)] = np.nan

# Get lengths of semiramps for all pix [number_of_semiramps, number_of_pix]
segs = np.zeros_like(gdq_2d)
segs = np.zeros_like(gdq_2d).astype(np.uint16)

# Counter of semiramp for each pixel
sr_index = np.zeros(npix, dtype=np.uint8)
sr_index = np.zeros(npix, dtype=np.uint16)
pix_not_done = np.ones(npix, dtype=bool) # initialize to True

i_read = 0
Expand Down Expand Up @@ -558,7 +558,7 @@ def calc_slope_vars(ramp_data, rn_sect, gain_sect, gdq_sect, group_time, max_seg

i_read += 1

segs = segs.astype(np.uint8)
segs = segs.astype(np.uint16)
segs_beg = segs[:max_seg, :] # the leading nonzero lengths

# Create reshaped version [ segs, y, x ] to simplify computation
Expand Down
60 changes: 60 additions & 0 deletions tests/test_ramp_fitting.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,23 @@
# -----------------------------------------------------------------------------
# Test Suite

def test_long_integration():
nints, nrows, ncols = 1, 1, 1
rnoise_val, gain_val = 0.1, 40.0
nframes, gtime, ftime = 1, 3, 3
tm = (nframes, gtime, ftime)
num_grps1 = 301
num_grps2 = 20
ramp_data, rnoise_array, gain_array = create_test_2seg_obs(rnoise_val, nints, num_grps1, num_grps2, ncols,
nrows, tm, rate=0, Poisson=True, grptime=gtime,
gain=gain_val, bias=0)
ramp_data.data[0, 291:, 0, 0] = 320 * 3
# Run ramp fit on RampData
buffsize, save_opt, algo, wt, ncores = 512, True, "OLS", "optimal", "none"
slopes, cube, optional, gls_dummy = ramp_fit_data(
ramp_data, buffsize, save_opt, rnoise_array, gain_array, algo, wt, ncores, dqflags)
np.testing.assert_almost_equal(slopes[0], .65, 2)


def base_neg_med_rates_single_integration():
"""
Expand Down Expand Up @@ -1506,6 +1523,49 @@ def setup_inputs(dims, var, tm):

return ramp_data, rnoise, gain

def create_test_2seg_obs(readnoise, num_ints, num_grps1, num_grps2, ncols,
nrows, tm, rate=0, Poisson=True, grptime=2.77,
gain=4.0, bias=3000, sat_group=0, sat_value=100000):
nframes, gtime, dtime = tm
rng = np.random.default_rng()
outcube1a = np.zeros(shape=(num_ints, num_grps1 + num_grps2, ncols, nrows), dtype=np.float32)
outcube1 = np.random.normal(loc=0.0, scale=readnoise / np.sqrt(2),
size=(num_ints, num_grps1 + num_grps2 + 1, ncols, ncols))
if rate > 0:
pvalues = grptime * rate + (rng.poisson(lam=gain * rate * grptime,
size=(num_ints, num_grps1 + num_grps2, ncols,
nrows)) - gain * rate * grptime) / gain
for intg in range(num_ints):
outcube1a[intg, 0, :, :] = outcube1[intg, 0, :, :]
for grp in range(1, num_grps1 + num_grps2):
outcube1a[intg, grp, :, :] = outcube1[intg, grp, :, :] + np.sum(pvalues[intg, 0:grp, :, :], axis=0)
outcube1f = outcube1a
else:
outcube1f = outcube1
outdata = outcube1f + bias
# print("cube mean values", np.mean(outdata[0,:,:,:], axis=(2, 3)))
outgdq = np.zeros_like(outdata, dtype=np.uint8)
outgdq[:, 0, :, :] = 1
outgdq[:, -1, :, :] = 1
if num_grps2 > 0:
outgdq[:, num_grps1, :, :] = 4
if sat_group > 0:
outgdq[:, sat_group:, :, :] = 2
outdata[:, sat_group:, :, :] = sat_value
pixdq = np.zeros(shape=(ncols, nrows), dtype=np.int32)
err = np.ones(shape=(num_ints, num_grps1 + num_grps2 + 1, nrows, ncols), dtype=np.float32)
ramp_data = RampData()
dark_current = np.zeros((nrows, ncols))
ramp_data.set_arrays(
data=outdata, err=err, groupdq=outgdq, pixeldq=pixdq, average_dark_current=dark_current)
ramp_data.set_meta(
name="MIRI", frame_time=dtime, group_time=gtime, groupgap=0,
nframes=nframes, drop_frames1=None)
ramp_data.set_dqflags(dqflags)
readnoise_array = np.ones_like(pixdq) * readnoise
gain_array = np.ones_like(pixdq) * gain
return ramp_data, readnoise_array, gain_array


# -----------------------------------------------------------------------------

Expand Down

0 comments on commit 72de44e

Please sign in to comment.