Skip to content

Commit

Permalink
Merge branch 'master' into JP-3649_imatch
Browse files Browse the repository at this point in the history
  • Loading branch information
melanieclarke authored Aug 30, 2024
2 parents eb5fc1f + 13c47a8 commit fb1a6bc
Show file tree
Hide file tree
Showing 9 changed files with 203 additions and 31 deletions.
12 changes: 8 additions & 4 deletions CHANGES.rst
Original file line number Diff line number Diff line change
Expand Up @@ -68,14 +68,18 @@ outlier_detection
- Fixed failures due to a missing ``wcs.array_shape`` attribute when the
``outlier_detection`` step was run standalone using e.g. ``strun`` [#8645]

- Refactored separate modes into submodules instead of inheriting from a base class.
Moved non-JWST-specific code to stcal. [#8613]

- Fixed file names and output directory for intermediate resampled spectral
images. Intermediate files now have suffix ``outlier_s2d`` and are saved to
the output directory alongside final products. [#8735]

set_telescope_pointing
----------------------

- replace usage of ``copy_arrays=True`` with ``memmap=False`` [#8660]

- Refactored separate modes into submodules instead of inheriting from a base class.
Moved non-JWST-specific code to stcal. [#8613]

resample_spec
-------------

Expand All @@ -85,7 +89,7 @@ resample_spec

- Updated handling for the ``pixel_scale_ratio`` parameter to apply only to the
spatial dimension, to match the sense of the parameter application to the
documented intent, and to conserve spectral flux when applied. [#8596]
documented intent, and to conserve spectral flux when applied. [#8596, #8727]

- Implemented handling for the ``pixel_scale`` parameter, which was previously
ignored for spectral resampling. [#8596]
Expand Down
10 changes: 5 additions & 5 deletions docs/jwst/outlier_detection/outlier_detection_spec.rst
Original file line number Diff line number Diff line change
Expand Up @@ -29,14 +29,14 @@ Specifically, this routine performs the following operations (modified from the
#. Resample all input images into a :py:class:`~jwst.datamodels.ModelContainer` using
:py:class:`~jwst.resample.resample_spec.ResampleSpecData`

- Resampled images are written out to disk if the ``save_intermediate_results``
parameter is set to `True`
- Resampled images are written out to disk with suffix "outlier_s2d"
if the ``save_intermediate_results`` parameter is set to `True`.
- **If resampling is turned off**, the original unrectified inputs are used to create
the median image for cosmic-ray detection
the median image for cosmic-ray detection.
#. Create a median image from (possibly) resampled :py:class:`~jwst.datamodels.ModelContainer`

- The median image is written out to disk if the ``save_intermediate_results``
parameter is set to `True`
- The median image is written out to disk with suffix "median"
if the ``save_intermediate_results`` parameter is set to `True`
#. Blot median image to match each original input image

- **If resampling is turned off**, the median image is used for comparison
Expand Down
4 changes: 2 additions & 2 deletions jwst/outlier_detection/imaging.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,8 +60,8 @@ def detect_outliers(
if resample_data:
# Start by creating resampled/mosaic images for
# each group of exposures
output_path = make_output_path(basepath=input_models[0].meta.filename,
suffix='')
output_path = make_output_path(
basepath=input_models[0].meta.filename, suffix='')
output_path = os.path.dirname(output_path)
resamp = resample.ResampleData(
input_models,
Expand Down
2 changes: 1 addition & 1 deletion jwst/outlier_detection/outlier_detection_step.py
Original file line number Diff line number Diff line change
Expand Up @@ -193,7 +193,7 @@ def _guess_mode(self, input_models):
if exptype in IFU_SPEC_MODES:
return 'ifu'

self.log.error("Outlier detection failed for unknown/unsupported ",
self.log.error(f"Outlier detection failed for unknown/unsupported "
f"exposure type: {exptype}")
return None

Expand Down
13 changes: 5 additions & 8 deletions jwst/outlier_detection/spec.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
Submodule for performing outlier detection on spectra.
"""
import copy
import os

from stdatamodels.jwst import datamodels

Expand Down Expand Up @@ -56,8 +57,12 @@ def detect_outliers(
if resample_data is True:
# Start by creating resampled/mosaic images for
# each group of exposures
output_path = make_output_path(
basepath=input_models[0].meta.filename, suffix='')
output_path = os.path.dirname(output_path)
resamp = resample_spec.ResampleSpecData(
input_models,
output=output_path,
single=True,
blendheaders=False,
wht_type=weight_type,
Expand All @@ -70,14 +75,6 @@ def detect_outliers(
)
median_wcs = resamp.output_wcs
drizzled_models = resamp.do_drizzle(input_models)
if save_intermediate_results:
for model in drizzled_models:
model.meta.filename = make_output_path(
basepath=model.meta.filename,
suffix="_outlier_s2d.fits",
)
log.info("Writing out resampled spectra...")
model.save(model.meta.filename)
else:
drizzled_models = input_models
for i in range(len(input_models)):
Expand Down
99 changes: 96 additions & 3 deletions jwst/outlier_detection/tests/test_outlier_detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@

from stdatamodels.jwst import datamodels

from jwst.assign_wcs import AssignWcsStep
from jwst.assign_wcs.pointing import create_fitswcs
from jwst.datamodels import ModelContainer
from jwst.outlier_detection import OutlierDetectionStep
from jwst.outlier_detection.utils import flag_resampled_model_crs
Expand All @@ -15,7 +17,7 @@
TSO_IMAGE_MODES,
CORON_IMAGE_MODES,
)
from jwst.assign_wcs.pointing import create_fitswcs
from jwst.resample.tests.test_resample_step import miri_rate_model

OUTLIER_DO_NOT_USE = np.bitwise_or(
datamodels.dqflags.pixel["DO_NOT_USE"], datamodels.dqflags.pixel["OUTLIER"]
Expand Down Expand Up @@ -210,7 +212,7 @@ def test_outlier_step(we_three_sci, tmp_cwd):
# Drop a CR on the science array
container[0].data[12, 12] += 1

# Verify that intermediary files are removed
# Verify that intermediate files are removed
OutlierDetectionStep.call(container)
i2d_files = glob(os.path.join(tmp_cwd, '*i2d.fits'))
median_files = glob(os.path.join(tmp_cwd, '*median.fits'))
Expand All @@ -232,13 +234,104 @@ def test_outlier_step(we_three_sci, tmp_cwd):
# Verify CR is flagged
assert result[0].dq[12, 12] == OUTLIER_DO_NOT_USE

# Verify that intermediary files are saved at the specified location
# Verify that intermediate files are saved at the specified location
i2d_files = glob(os.path.join(tmp_cwd, '*i2d.fits'))
median_files = glob(os.path.join(tmp_cwd, '*median.fits'))
assert len(i2d_files) != 0
assert len(median_files) != 0


def test_outlier_step_spec(tmp_cwd, tmp_path):
"""Test outlier step for spec data including saving intermediate results."""
output_dir = tmp_path / 'output'
output_dir.mkdir(exist_ok=True)
output_dir = str(output_dir)

# Make a MIRI model and assign a spectral wcs
miri_rate = miri_rate_model()
miri_cal = AssignWcsStep.call(miri_rate)

# Make it an exposure type outlier detection expects
miri_cal.meta.exposure.type = "MIR_LRS-FIXEDSLIT"

# Make a couple copies
container = ModelContainer([miri_cal, miri_cal.copy(), miri_cal.copy()])

# Give each image a unique name so output files don't overwrite
for i, model in enumerate(container):
model.meta.filename = f'test_{i}_cal.fits'

# Drop a CR on the science array in the first image
container[0].data[209, 37] += 1

# Verify that intermediate files are removed when not saved
# (s2d files are expected, i2d files are not, but we'll check
# for them to make sure the imaging extension didn't creep back in)
OutlierDetectionStep.call(container, output_dir=output_dir, save_results=True)
for dirname in [output_dir, tmp_cwd]:
result_files = glob(os.path.join(dirname, '*outlierdetectionstep.fits'))
i2d_files = glob(os.path.join(dirname, '*i2d*.fits'))
s2d_files = glob(os.path.join(dirname, '*outlier_s2d.fits'))
median_files = glob(os.path.join(dirname, '*median.fits'))

# intermediate files are removed
assert len(i2d_files) == 0
assert len(s2d_files) == 0
assert len(median_files) == 0

# result files are written to the output directory
if dirname == output_dir:
assert len(result_files) == len(container)
else:
assert len(result_files) == 0

# Call again, but save intermediate to the output path
result = OutlierDetectionStep.call(
container, save_results=True, save_intermediate_results=True,
output_dir=output_dir
)

# Make sure nothing changed in SCI array
for image, corrected in zip(container, result):
np.testing.assert_allclose(image.data, corrected.data)

# Verify CR is flagged
assert result[0].dq[209, 37] == OUTLIER_DO_NOT_USE

# Verify that intermediate files are saved at the specified location
for dirname in [output_dir, tmp_cwd]:
all_files = glob(os.path.join(dirname, '*.fits'))
result_files = glob(os.path.join(dirname, '*outlierdetectionstep.fits'))
i2d_files = glob(os.path.join(dirname, '*i2d*.fits'))
s2d_files = glob(os.path.join(dirname, '*outlier_s2d.fits'))
median_files = glob(os.path.join(dirname, '*median.fits'))
if dirname == output_dir:
# result files are written to the output directory
assert len(result_files) == len(container)

# s2d and median files are written to the output directory
assert len(s2d_files) == len(container)
assert len(median_files) == 1

# i2d files not written
assert len(i2d_files) == 0

# nothing else was written
assert len(all_files) == len(s2d_files) + len(median_files) + len(result_files)
else:
# nothing should be written to the current directory
assert len(result_files) == 0
assert len(s2d_files) == 0
assert len(median_files) == 0
assert len(i2d_files) == 0
assert len(all_files) == 0

miri_rate.close()
result.close()
for model in container:
model.close()


def test_outlier_step_on_disk(we_three_sci, tmp_cwd):
"""Test whole step with an outlier including saving intermediate and results files"""

Expand Down
10 changes: 8 additions & 2 deletions jwst/resample/resample.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@ def __init__(self, input_models, output=None, single=False, blendheaders=True,
if output is not None and '.fits' not in str(output):
self.output_dir = output
self.output_filename = None
self.intermediate_suffix = 'outlier_i2d'

self.pscale_ratio = pscale_ratio
self.single = single
Expand Down Expand Up @@ -276,16 +277,21 @@ def resample_many_to_many(self, input_models):
"""
for exposure in input_models.models_grouped:
output_model = self.blank_output

# Determine output file type from input exposure filenames
# Use this for defining the output filename
indx = exposure[0].meta.filename.rfind('.')
output_type = exposure[0].meta.filename[indx:]
output_root = '_'.join(exposure[0].meta.filename.replace(
output_type, '').split('_')[:-1])
if self.asn_id is not None:
output_model.meta.filename = f'{output_root}_{self.asn_id}_outlier_i2d{output_type}'
output_model.meta.filename = (
f'{output_root}_{self.asn_id}_'
f'{self.intermediate_suffix}{output_type}')
else:
output_model.meta.filename = f'{output_root}_outlier_i2d{output_type}'
output_model.meta.filename = (
f'{output_root}_'
f'{self.intermediate_suffix}{output_type}')

# Initialize the output with the wcs
driz = gwcs_drizzle.GWCSDrizzle(output_model, pixfrac=self.pixfrac,
Expand Down
10 changes: 6 additions & 4 deletions jwst/resample/resample_spec.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@ def __init__(self, input_models, output=None, single=False, blendheaders=False,
if output is not None and '.fits' not in str(output):
self.output_dir = output
self.output_filename = None
self.intermediate_suffix = 'outlier_s2d'

self.pscale_ratio = pscale_ratio
self.single = single
Expand All @@ -78,7 +79,7 @@ def __init__(self, input_models, output=None, single=False, blendheaders=False,
self.in_memory = kwargs.get('in_memory', True)
self._recalc_pscale_ratio = False

log.info(f"Driz parameter kernal: {self.kernel}")
log.info(f"Driz parameter kernel: {self.kernel}")
log.info(f"Driz parameter pixfrac: {self.pixfrac}")
log.info(f"Driz parameter fillval: {self.fillval}")
log.info(f"Driz parameter weight_type: {self.weight_type}")
Expand Down Expand Up @@ -509,6 +510,7 @@ def build_interpolated_output_wcs(self, input_models):
all_wavelength = []
all_ra_slit = []
all_dec_slit = []
xstop = 0

for im, model in enumerate(input_models):
wcs = model.meta.wcs
Expand Down Expand Up @@ -700,10 +702,10 @@ def build_interpolated_output_wcs(self, input_models):
else:
pix_to_xtan.intercept = -0.5 * (x_size - 1) * pix_to_xtan.slope

# single model use size of x_tan_array
# single model: use size of x_tan_array
# to be consistent with method before
if len(input_models) == 1:
x_size = len(x_tan_array)
x_size = int(np.ceil(xstop))

# define the output wcs
transform = mapping | (pix_to_xtan & pix_to_ytan | undist2sky) & pix_to_wavelength
Expand All @@ -723,7 +725,7 @@ def build_interpolated_output_wcs(self, input_models):
# compute the output array size in WCS axes order, i.e. (x, y)
output_array_size = [0, 0]
output_array_size[spectral_axis] = int(np.ceil(len(wavelength_array)))
output_array_size[spatial_axis] = int(np.ceil(x_size * self.pscale_ratio))
output_array_size[spatial_axis] = x_size

# turn the size into a numpy shape in (y, x) order
output_wcs.array_shape = output_array_size[::-1]
Expand Down
Loading

0 comments on commit fb1a6bc

Please sign in to comment.