Skip to content

Commit

Permalink
JP- 3778 Allow the RSCD correction to work on segmented TSO data (#8946)
Browse files Browse the repository at this point in the history
  • Loading branch information
melanieclarke authored Nov 27, 2024
2 parents 6ea327f + a9ab10a commit 615714b
Show file tree
Hide file tree
Showing 4 changed files with 153 additions and 13 deletions.
1 change: 1 addition & 0 deletions changes/8946.rscd.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
Updated RSCD step to work on segmented data
42 changes: 40 additions & 2 deletions jwst/regtest/test_miri_lrs_slitless.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,19 +5,19 @@

from jwst.stpipe import Step
from gwcs.wcstools import grid_from_bounding_box

from stdatamodels.jwst import datamodels

DATASET1_ID = "jw01536028001_03103_00001-seg001_mirimage"
DATASET2_ID = "jw01536028001_03103_00001-seg002_mirimage"
DATASET3_ID = "jw01281001001_04103_00001-seg002_trim_mirimage"
ASN3_FILENAME = "jw01536-o028_20221202t215749_tso3_00001_asn.json"
PRODUCT_NAME = "jw01536-o028_t008_miri_p750l-slitlessprism"
ASN_ID = "o028"


@pytest.fixture(scope="module")
def run_tso1_pipeline(rtdata_module):
"""Run the calwebb_tso1 pipeline on a MIRI LRS slitless exposure."""
"""Run the calwebb_detector1 pipeline on a MIRI LRS slitless exposure."""
rtdata = rtdata_module
rtdata.get_data(f"miri/lrs/{DATASET1_ID}_uncal.fits")

Expand All @@ -34,6 +34,25 @@ def run_tso1_pipeline(rtdata_module):
Step.from_cmdline(args)


@pytest.fixture(scope="module")
def run_detector1_pipeline(rtdata_module):
"""Run calwebb_detector pipeline on a MIRI LRS slitless exposure for Segment 2 data.
Focusing on the steps that depend on integration # and not covered by run_tso1_pipeline.
Also test running RSC step"""
rtdata = rtdata_module
rtdata.get_data(f"miri/lrs/{DATASET3_ID}_uncal.fits")

args = [
"calwebb_detector1",
rtdata.input,
"--steps.emicorr.save_results=True",
"--steps.rscd.skip=False",
"--steps.rscd.save_results=True",
"--steps.dark_current.save_results=True",
]
Step.from_cmdline(args)


@pytest.fixture(scope="module")
def run_tso_spec2_pipeline(run_tso1_pipeline, rtdata_module):
"""Run the calwebb_tso-spec2 pipeline on a MIRI LRS slitless exposure."""
Expand Down Expand Up @@ -86,6 +105,25 @@ def test_miri_lrs_slitless_tso1(run_tso1_pipeline, rtdata_module, fitsdiff_defau
assert diff.identical, diff.report()


@pytest.mark.bigdata
@pytest.mark.parametrize("step_suffix", ['rscd', 'emicorr',
'dark_current', 'ramp', 'rate', 'rateints'])
def test_miri_lrs_slitless_detector1(run_detector1_pipeline, rtdata_module,
fitsdiff_default_kwargs, step_suffix):
"""
Regression test of detector1 pipeline performed on MIRI LRS slitless TSO data.
Testing segment 2 data for RSCD, emicorr and dark_current.
"""
rtdata = rtdata_module
output_filename = f"{DATASET3_ID}_{step_suffix}.fits"
rtdata.output = output_filename

rtdata.get_truth(f"truth/test_miri_lrs_slitless_detector1/{output_filename}")

diff = FITSDiff(rtdata.output, rtdata.truth, **fitsdiff_default_kwargs)
assert diff.identical, diff.report()


@pytest.mark.bigdata
@pytest.mark.parametrize("step_suffix", ["assign_wcs", "srctype", "flat_field",
"pixel_replace", "calints", "x1dints"])
Expand Down
32 changes: 26 additions & 6 deletions jwst/rscd/rscd_sub.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,12 +80,22 @@ def correction_skip_groups(output, group_skip):
RSCD-corrected science data
"""

# Save some data params for easy use later
sci_nints = output.data.shape[0] # number of integrations
sci_ngroups = output.data.shape[1] # number of groups
# General exposure parameters
sci_ngroups = output.meta.exposure.ngroups
sci_nints = output.meta.exposure.nints

# values defined for segmented data
sci_int_start = output.meta.exposure.integration_start

if sci_int_start is None:
sci_int_start = 1


log.debug("RSCD correction using: nints=%d, ngroups=%d" %
(sci_nints, sci_ngroups))
log.debug("The first integration in the data is integration: %d" %
(sci_int_start))
log.info("Number of groups to skip for integrations 2 and higher: %d " %group_skip)

# If ngroups <= group_skip+3, skip the flagging
# the +3 is to ensure there is a slope to be fit including the flagging for
Expand All @@ -96,9 +106,19 @@ def correction_skip_groups(output, group_skip):
output.meta.cal_step.rscd = 'SKIPPED'
return output

# If ngroups > group_skip+3, set all of the GROUPDQ in the first group to 'DO_NOT_USE'
output.groupdq[1:, 0:group_skip:, :] = \
np.bitwise_or(output.groupdq[1:, 0:group_skip, :, :], dqflags.group['DO_NOT_USE'])
# The RSCD correction is applied to integrations 2 and higher.
# For segmented data the first integration in the file may not be the first integration in the
# exposure. The value in meta.exposure.integration_start holds the value of the first integration
# in the file.
# If a correction is to be done and if ngroups > group_skip+3, then set all of the GROUPDQ
# in 0: group_skip to 'DO_NOT_USE'

int_start = 1
if sci_int_start !=1: # we have segmented data
int_start = 0

output.groupdq[int_start:, 0:group_skip, :, :] = \
np.bitwise_or(output.groupdq[int_start:, 0:group_skip, :, :], dqflags.group['DO_NOT_USE'])
log.debug(f"RSCD Sub: adding DO_NOT_USE to GROUPDQ for the first {group_skip} groups")
output.meta.cal_step.rscd = 'COMPLETE'

Expand Down
91 changes: 86 additions & 5 deletions jwst/rscd/tests/test_rscd.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,18 +12,27 @@ def test_rscd_baseline_set_groupdq():
groupdq flags in the 1st integration
"""

exposure = {
'integration_start' : None,
'integration_end': None,
'ngroups' : 10,
'nints' : 2
}
# size of integration
ngroups = 10
ngroups = exposure['ngroups']
nints = exposure['nints']

xsize = 10
ysize = 10

# create the data and groupdq arrays
csize = (2, ngroups, ysize, xsize)
csize = (nints, ngroups, ysize, xsize)
data = np.full(csize, 1.0, dtype=np.float32)
groupdq = np.zeros(csize, dtype=np.uint8)

# create a JWST datamodel for MIRI data
dm_ramp = RampModel(data=data, groupdq=groupdq)
dm_ramp.meta.exposure._instance.update(exposure)

# get the number of groups to flag
nflag = 3
Expand Down Expand Up @@ -71,19 +80,31 @@ def test_rscd_baseline_too_few_groups():
"""

# size of exposure
nints = 2
ngroups = 3
xsize = 10
ysize = 10

exposure = {
'integration_start' : None,
'integration_end': None,
'ngroups' : 3,
'nints' : 2
}
# size of integration
ngroups = exposure['ngroups']
nints = exposure['nints']

xsize = 10
ysize = 10

# create the data and groupdq arrays
csize = (nints, ngroups, ysize, xsize)
data = np.full(csize, 1.0, dtype=np.float32)
groupdq = np.zeros(csize, dtype=np.uint8)

# create a JWST datamodel for MIRI data on a copy (the copy is created at the step script)
dm_ramp = RampModel(data=data, groupdq=groupdq)

dm_ramp.meta.exposure._instance.update(exposure)

# get the number of groups to flag
nflag = 3

Expand All @@ -99,3 +120,63 @@ def test_rscd_baseline_too_few_groups():
dq_diff,
err_msg='groupdq flags changed when '
+ 'not enough groups are present')


def test_rscd_tso():
"""
The RSCD correction is generally skipped for TSO data, but some users
have been running it on TSO data. So this test was added.
Test for TSO segmented data that the correct groups are flagged as 'DO_NOT_USE'
for integration 2 and higher. Set up the segmented data so the segment
is for integration 25 to 50. A rscd correction should be applied to all
the data.
"""
exposure = {
'integration_start' : 25,
'integration_end': 50,
'ngroups' : 8,
'nints' : 50
}

xsize = 10
ysize = 10
ngroups = exposure['ngroups']
seg_nints = exposure['integration_end'] - exposure['integration_start'] + 1
input_model = RampModel((seg_nints, exposure['ngroups'],
ysize, xsize))

input_model.groupdq[:,:,:,:] = 0 # initize to 0 - all good
input_model.meta.exposure._instance.update(exposure)

# get the number of groups to flag
nflag = 4

# run the RSCD baseline correction step on a copy (the copy is created at the step script)
ramp_rscd = correction_skip_groups(input_model.copy(), nflag)


# check that the difference in the groupdq flags is equal to
# the 'DO_NOT_USE' flag for the 1st integration in the segment
# which is actually the 25th integration
dq_diff = (ramp_rscd.groupdq[0, 0:nflag, :, :]
- input_model.groupdq[0, 0:nflag, :, :])

np.testing.assert_array_equal(np.full((nflag, ysize, xsize),
dqflags.group['DO_NOT_USE'],
dtype=int),
dq_diff,
err_msg='Diff in groupdq flags is not '
+ 'equal to the DO_NOT_USE flag')

# test that the groupdq flags are not changed for the rest of the groups
# in the 1st integration in the segment
dq_diff = (ramp_rscd.groupdq[0, nflag:ngroups, :, :]
- input_model.groupdq[0, nflag:ngroups, :, :])
np.testing.assert_array_equal(np.full((ngroups - nflag, ysize, xsize),
0,
dtype=int),
dq_diff,
err_msg='groupdq flags changed after '
+ 'maximum requested')

0 comments on commit 615714b

Please sign in to comment.