Skip to content

Commit

Permalink
JP-2075: fixed flux scaling issues in wfss_contam
Browse files Browse the repository at this point in the history
  • Loading branch information
emolter committed Apr 10, 2024
1 parent ccdb12d commit 205a825
Show file tree
Hide file tree
Showing 8 changed files with 1,347 additions and 4 deletions.
12 changes: 8 additions & 4 deletions jwst/wfss_contam/disperse.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import numpy as np
import warnings

from scipy.interpolate import interp1d

Expand Down Expand Up @@ -115,9 +116,10 @@ def flux(x):

# Use a natural wavelength scale or the wavelength scale of the input SED/spectrum,
# whichever is smaller, divided by oversampling requested
input_dlam = np.median(lams[1:] - lams[:-1])
if input_dlam < dw:
dlam = input_dlam / oversample_factor
if len(lams) > 1:
input_dlam = np.median(lams[1:] - lams[:-1])
if input_dlam < dw:
dlam = input_dlam / oversample_factor
else:
# this value gets used when we only have 1 direct image wavelength
dlam = dw / oversample_factor
Expand Down Expand Up @@ -161,7 +163,9 @@ def flux(x):
# values are naturally in units of physical fluxes, so we divide out
# the sensitivity (flux calibration) values to convert to units of
# countrate (DN/s).
counts = flux(lams) * areas / sens
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=RuntimeWarning, message="divide by zero")
counts = flux(lams) * areas / (sens * oversample_factor)
counts[no_cal] = 0. # set to zero where no flux cal info available

return xs, ys, areas, lams, counts, ID
44 changes: 44 additions & 0 deletions jwst/wfss_contam/observations.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,53 @@

import logging

from photutils.background import Background2D, MedianBackground
from astropy.stats import SigmaClip

log = logging.getLogger(__name__)
log.setLevel(logging.DEBUG)


def background_subtract(data, box_size=None, filter_size=(3,3), sigma=3.0, exclude_percentile=30.0):
"""
Simple astropy background subtraction
Parameters
----------
data : np.ndarray
2D array of pixel values
box_size : tuple
Size of box in pixels to use for background estimation.
If not set, defaults to 1/5 of the image size.
filter_size : tuple
Size of filter to use for background estimation
sigma : float
Sigma threshold for background clipping
exclude_percentile : float
Percentage of masked pixels above which box is excluded from background estimation
Returns
-------
data : np.ndarray
2D array of pixel values with background subtracted
Notes
-----
Improper background subtraction in input _i2d image leads to extra flux
in the simulated dispersed image, and was one cause of flux scaling issues
in a previous version.
"""
if box_size is None:
box_size = (int(data.shape[0]/5), int(data.shape[1]/5))
sigma_clip = SigmaClip(sigma=sigma)
bkg_estimator = MedianBackground()
bkg = Background2D(data, box_size, filter_size=filter_size,
sigma_clip=sigma_clip, bkg_estimator=bkg_estimator,
exclude_percentile=exclude_percentile)

return data - bkg.background


class Observation:
"""This class defines an actual observation. It is tied to a single grism image."""

Expand Down Expand Up @@ -120,6 +163,7 @@ def create_pixel_list(self):
log.info(f"Using direct image {dir_image_name}")
with datamodels.open(dir_image_name) as model:
dimage = model.data
dimage = background_subtract(dimage)

if self.sed_file is None:
# Default pipeline will use sed_file=None, so we need to compute
Expand Down
Empty file.
Empty file.
Loading

0 comments on commit 205a825

Please sign in to comment.