Skip to content

Commit

Permalink
Merge pull request #20 from ajshajib/feature/composite
Browse files Browse the repository at this point in the history
Hierarchical sampling with composite mass model
  • Loading branch information
sibirrer authored Dec 8, 2023
2 parents 56c660f + 1de5e4e commit 423e6d8
Show file tree
Hide file tree
Showing 29 changed files with 1,830 additions and 428 deletions.
44 changes: 31 additions & 13 deletions hierarc/LensPosterior/base_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ def __init__(
kwargs_seeing,
kwargs_numerics_galkin,
anisotropy_model,
lens_model_list=None,
kwargs_lens_light=None,
lens_light_model_list=["HERNQUIST"],
MGE_light=False,
Expand All @@ -31,6 +32,7 @@ def __init__(
num_psf_sampling=100,
num_kin_sampling=1000,
multi_observations=False,
cosmo_fiducial=None,
):
"""
Expand All @@ -42,27 +44,43 @@ def __init__(
:param gamma_error: 1-sigma uncertainty on power-law slope
:param r_eff: half-light radius of the deflector (arc seconds)
:param r_eff_error: uncertainty on half-light radius
:param kwargs_aperture: spectroscopic aperture keyword arguments, see lenstronomy.Galkin.aperture for options
:param kwargs_seeing: seeing condition of spectroscopic observation, corresponds to kwargs_psf in the GalKin module specified in lenstronomy.GalKin.psf
:param kwargs_numerics_galkin: numerical settings for the integrated line-of-sight velocity dispersion
:param anisotropy_model: type of stellar anisotropy model. See details in MamonLokasAnisotropy() class of lenstronomy.GalKin.anisotropy
:param multi_observations: bool, if True, interprets kwargs_aperture and kwargs_seeing as lists of multiple
observations
:param kwargs_aperture: spectroscopic aperture keyword arguments, see
lenstronomy.Galkin.aperture for options
:param kwargs_seeing: seeing condition of spectroscopic observation, corresponds
to kwargs_psf in the GalKin module specified in lenstronomy.GalKin.psf
:param kwargs_numerics_galkin: numerical settings for the integrated
line-of-sight velocity dispersion
:param anisotropy_model: type of stellar anisotropy model. See details in
MamonLokasAnisotropy() class of lenstronomy.GalKin.anisotropy
:param multi_observations: bool, if True, interprets kwargs_aperture and
kwargs_seeing as lists of multiple observations
:param lens_model_list: keyword argument list of lens model (optional)
:param kwargs_lens_light: keyword argument list of lens light model (optional)
:param kwargs_mge_light: keyword arguments that go into the MGE decomposition routine
:param hernquist_approx: bool, if True, uses the Hernquist approximation for the light profile
:param kwargs_mge_light: keyword arguments that go into the MGE decomposition
routine
:param hernquist_approx: bool, if True, uses the Hernquist approximation for the
light profile
:param cosmo_fiducial: astropy.cosmology instance, if None,
uses astropy's default cosmology
"""
self._z_lens, self._z_source = z_lens, z_source
kwargs_model = {
"lens_model_list": ["SPP"],
"lens_light_model_list": lens_light_model_list,
}

if lens_model_list is None:
kwargs_model = {
"lens_model_list": ["SPP"],
"lens_light_model_list": lens_light_model_list,
}
else:
kwargs_model = {
"lens_model_list": lens_model_list,
"lens_light_model_list": lens_light_model_list,
}
TDCosmography.__init__(
self,
z_lens,
z_source,
kwargs_model,
cosmo_fiducial=None,
cosmo_fiducial=cosmo_fiducial,
lens_model_kinematics_bool=None,
light_model_kinematics_bool=None,
kwargs_seeing=kwargs_seeing,
Expand Down
53 changes: 36 additions & 17 deletions hierarc/LensPosterior/kin_constraints.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,13 +27,15 @@ def __init__(
sigma_v_error_cov_matrix=None,
kwargs_lens_light=None,
lens_light_model_list=["HERNQUIST"],
lens_model_list=None,
MGE_light=False,
kwargs_mge_light=None,
hernquist_approx=True,
sampling_number=1000,
num_psf_sampling=100,
num_kin_sampling=1000,
multi_observations=False,
cosmo_fiducial=None,
):
"""
Expand All @@ -45,23 +47,36 @@ def __init__(
:param gamma_error: 1-sigma uncertainty on power-law slope
:param r_eff: half-light radius of the deflector (arc seconds)
:param r_eff_error: uncertainty on half-light radius
:param sigma_v_measured: numpy array of IFU velocity dispersion of the main deflector in km/s
:param sigma_v_error_independent: numpy array of 1-sigma uncertainty in velocity dispersion of the IFU
:param sigma_v_measured: numpy array of IFU velocity dispersion of the main
deflector in km/s
:param sigma_v_error_independent: numpy array of 1-sigma uncertainty in velocity
dispersion of the IFU
observation independent of each other
:param sigma_v_error_covariant: covariant error in the measured kinematics shared among all IFU measurements
:param sigma_v_error_cov_matrix: error covariance matrix in the sigma_v measurements (km/s)^2
:type sigma_v_error_cov_matrix: nxn matrix with n the length of the sigma_v_measured array
:param kwargs_aperture: spectroscopic aperture keyword arguments, see lenstronomy.Galkin.aperture for options
:param kwargs_seeing: seeing condition of spectroscopic observation, corresponds to kwargs_psf in the GalKin
:param sigma_v_error_covariant: covariant error in the measured kinematics
shared among all IFU measurements
:param sigma_v_error_cov_matrix: error covariance matrix in the sigma_v
measurements (km/s)^2
:type sigma_v_error_cov_matrix: nxn matrix with n the length of the
sigma_v_measured array
:param kwargs_aperture: spectroscopic aperture keyword arguments, see
lenstronomy.Galkin.aperture for options
:param kwargs_seeing: seeing condition of spectroscopic observation, corresponds
to kwargs_psf in the GalKin
module specified in lenstronomy.GalKin.psf
:param kwargs_numerics_galkin: numerical settings for the integrated line-of-sight velocity dispersion
:param anisotropy_model: type of stellar anisotropy model. See details in MamonLokasAnisotropy() class of
lenstronomy.GalKin.anisotropy
:param kwargs_numerics_galkin: numerical settings for the integrated
line-of-sight velocity dispersion
:param anisotropy_model: type of stellar anisotropy model. See details in
MamonLokasAnisotropy() class of lenstronomy.GalKin.anisotropy
:param lens_model_list: keyword argument list of lens model (optional)
:param kwargs_lens_light: keyword argument list of lens light model (optional)
:param kwargs_mge_light: keyword arguments that go into the MGE decomposition routine
:param hernquist_approx: bool, if True, uses the Hernquist approximation for the light profile
:param multi_observations: bool, if True, interprets kwargs_aperture and kwargs_seeing as lists of multiple
observations
:param kwargs_mge_light: keyword arguments that go into the MGE decomposition
routine
:param hernquist_approx: bool, if True, uses the Hernquist approximation for the
light profile
:param multi_observations: bool, if True, interprets kwargs_aperture and
kwargs_seeing as lists of multiple observations
:param cosmo_fiducial: astropy.cosmology instance, if None,
uses astropy's default
"""
self._sigma_v_measured = np.array(sigma_v_measured)
self._sigma_v_error_independent = np.array(sigma_v_error_independent)
Expand All @@ -70,6 +85,7 @@ def __init__(

self._kwargs_lens_light = kwargs_lens_light
self._anisotropy_model = anisotropy_model

BaseLensConfig.__init__(
self,
z_lens,
Expand All @@ -84,6 +100,7 @@ def __init__(
kwargs_seeing,
kwargs_numerics_galkin,
anisotropy_model,
lens_model_list=lens_model_list,
kwargs_lens_light=kwargs_lens_light,
lens_light_model_list=lens_light_model_list,
MGE_light=MGE_light,
Expand All @@ -93,6 +110,7 @@ def __init__(
num_psf_sampling=num_psf_sampling,
num_kin_sampling=num_kin_sampling,
multi_observations=multi_observations,
cosmo_fiducial=cosmo_fiducial,
)

def j_kin_draw(self, kwargs_anisotropy, no_error=False):
Expand Down Expand Up @@ -161,9 +179,10 @@ def hierarchy_configuration(self, num_sample_model=20):
def model_marginalization(self, num_sample_model=20):
"""
:param num_sample_model: number of samples drawn from the lens and light model posterior to compute the
dimensionless kinematic component J()
:return: J() as array for each measurement prediction, covariance matrix in sqrt(J)
:param num_sample_model: number of samples drawn from the lens and light model
posterior to compute the dimensionless kinematic component J()
:return: J() as array for each measurement prediction, covariance matrix in
sqrt(J)
"""
num_data = len(self._sigma_v_measured)
j_kin_matrix = np.zeros(
Expand Down
Loading

0 comments on commit 423e6d8

Please sign in to comment.