-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added solution to additoinal exercise ch01
- Loading branch information
WandrilleD
committed
Jun 15, 2022
1 parent
289a29e
commit 1f2beb4
Showing
1 changed file
with
77 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
df = pd.read_csv('../data/Patel.csv',sep=',', header=0) | ||
|
||
df = df.set_index(df.iloc[:,0], inplace=False) | ||
df = df.iloc[:,1:] | ||
|
||
X = df.T | ||
|
||
print(X.shape) | ||
|
||
patients = list(map(lambda s: s[0:5],df.columns)) #take first 5 letter for patient id | ||
|
||
color_dict={'MGH26':'blue', 'MGH28':'orange', 'MGH29': 'red', 'MGH30': 'green', 'MGH31': 'pink'} | ||
colors=[color_dict[p] for p in patients] | ||
|
||
|
||
plt.figure(figsize=(10,10)) | ||
ax = sns.heatmap(X, yticklabels=False) | ||
plt.ylabel("Cell type") | ||
plt.xlabel("Gene") | ||
plt.show(block=False) | ||
|
||
pca = PCA() #create a PCA object | ||
|
||
pca.fit(X) | ||
x_pca = pca.transform(X) | ||
|
||
var_explained=pca.explained_variance_ratio_ | ||
|
||
plt.figure(figsize=(10,10)) | ||
plt.scatter(x_pca[:,0],x_pca[:,1],c=colors) | ||
plt.xlabel('First Principal Component ({0:.2f}%)'.format(var_explained[0]*100)) | ||
plt.ylabel('Second Principal Component ({0:.2f}%)'.format(var_explained[1]*100)) | ||
|
||
tsne=TSNE(n_components=2,perplexity=5).fit(X)#create the T-SNE object and fit the data | ||
X_embedded = tsne.embedding_#project the data to the new manifold using the fitted function found before | ||
|
||
plt.figure(figsize=(10,10)) | ||
plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=colors, s=60, lw=0) | ||
plt.title('KL divergence {0:.2f}\n perplexity= {1}'.format(tsne.kl_divergence_,5),fontsize=12) | ||
plt.xlabel('First Dimension') | ||
plt.ylabel('Second Dimension') | ||
|
||
dbscan = cluster.DBSCAN(eps=20, min_samples=5) | ||
dbscan.fit_predict(X_embedded[:, 0:2]) | ||
|
||
plt.figure(figsize=(10,10)) | ||
idx = np.where(dbscan.labels_>=0)[0] | ||
plt.scatter(X_embedded[idx, 0], X_embedded[idx, 1], c=[colors[i] for i in idx], s=60, lw=0) | ||
plt.title('KL divergence {0:.2f}\n perplexity= {1}'.format(tsne.kl_divergence_,5),fontsize=12) | ||
plt.xlabel('First Dimension') | ||
plt.ylabel('Second Dimension') | ||
|
||
|
||
X = X.T | ||
|
||
print(X.shape) | ||
|
||
kmeans = cluster.KMeans(5) | ||
kmeans.fit(X) | ||
cl_labels = kmeans.labels_ | ||
|
||
print(Counter(cl_labels)) | ||
|
||
tsne=TSNE(n_components=2,perplexity=15).fit(X)#create the T-SNE object and fit the data | ||
X_embedded = tsne.embedding_#project the data to the new manifold using the fitted function found before | ||
|
||
dbscan = cluster.DBSCAN(eps=2, min_samples=5) | ||
dbscan.fit_predict(X_embedded[:, 0:2]) | ||
|
||
plt.figure(figsize=(10,10)) | ||
idx = np.where(dbscan.labels_>=0)[0] | ||
plt.scatter(X_embedded[idx, 0], X_embedded[idx, 1], c=[cl_labels[i] for i in idx], s=60, lw=0, cmap='plasma') | ||
plt.xlabel('First Dimension') | ||
plt.ylabel('Second Dimension') | ||
|
||
plt.show() | ||
|