Skip to content

seungjun-Park/Deformable-Sketch-Detection-Network

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deformable-Sketch(Edge)-Detection-Network

Sketch detection network with deformable convolution.
When the input image is given, then model outs it's sketch(edge) version.
I use my custom handmake sketch(edge) dataset instead general benchmark datasets.

Test Envrionment

  • NVIDIA A5000 24G
  • Train 512 x 512 image
  • Model params: 6.2M

Dataset

[Anime] Dataset (included nude pictures, and not multiscale)

  • train: 120 images, edges
  • val: 10 images, edges

Performance

Anime

Model ODS↑ OIS↑ LPIPS(edge)↑ LPIPS(image)↑
UAED(pretrained by BSDS) 0.5417 0.5502 0.6500 0.5286
MuGE(pretrained by BSDS, α = 1.0) 0.5502 0.5721 0.6830 0.5465
DSDN(Anime) 0.6340 0.6389 0.7735 0.6323

BSDS500

Model ODS↑ OIS↑ LPIPS(edge)↑ LPIPS(image)↑
UAED(pretrained by BSDS) 0.8410 0.8470 0.6519 0.3352
MuGE(pretrained by BSDS, α = 1.0) 0.850 0.8560 0.6899 0.3403
DSDN(Anime) 0.7354 0.7354 0.5301 0.4022

Results

Aru(BlueArchive)

0bea28087016b57f31978e164ceca03e493bd27b 0bea28087016b57f31978e164ceca03e493bd27b png
0dc453c239b447752a00695da65d5f7f1cd1a004 0dc453c239b447752a00695da65d5f7f1cd1a004 png
0fca67f26e408849e21ade789408e16b0d4f08f7 0fca67f26e408849e21ade789408e16b0d4f08f7 png

Shiroko(BlueArchive)

0ff09e08a9089e3ab992b95d26c3e9a9815813b3 0ff09e08a9089e3ab992b95d26c3e9a9815813b3 png
3a5738b6b2f689bf0370b2decb495227b81e277b 3a5738b6b2f689bf0370b2decb495227b81e277b png
3ade832bf5ed9561c681adf1b039659a2ecf13be 3ade832bf5ed9561c681adf1b039659a2ecf13be png

Wakamo(BlueArchive)

0a3294741a8b98330f520a3e0f44b1ae7fb1993a 0a3294741a8b98330f520a3e0f44b1ae7fb1993a png
0f5722138b086e6f28e3a354087d0e0692ea3a03 0f5722138b086e6f28e3a354087d0e0692ea3a03 png
d84a452d25ac20b9cccdac007cc5f12ea349ba85 d84a452d25ac20b9cccdac007cc5f12ea349ba85 png

Surtr(Arknights)

6b7bb28262eebebffeb3941db1258c0f5366a7b3 6b7bb28262eebebffeb3941db1258c0f5366a7b3 png
5a165acbcb8ef52378282b515b24e9c277740ebf 5a165acbcb8ef52378282b515b24e9c277740ebf png
fcede69367108db9f91019b5ff0f8792656d2bc7 fcede69367108db9f91019b5ff0f8792656d2bc7 png

Amiya(Arknights)

c08049bd745098b0869968caf059811fff9eb567 c08049bd745098b0869968caf059811fff9eb567 png
fbd362241e3e84b52ccd40f70d627fcc9b5dbdd1 fbd362241e3e84b52ccd40f70d627fcc9b5dbdd1 png
ffdc6bef27d1243e6aef64116429421a22591219 ffdc6bef27d1243e6aef64116429421a22591219 png

Theresa(Arknights)

ad6114c4155a7cd5ea4dca11554b787e325e1801 ad6114c4155a7cd5ea4dca11554b787e325e1801 png
c8cca7fcb8cc00f8c799f361b9d4c9832e4d0801 c8cca7fcb8cc00f8c799f361b9d4c9832e4d0801 png
f187bff62fd3eb24bb1e0a6a0ecd813451978e5a f187bff62fd3eb24bb1e0a6a0ecd813451978e5a png

Benchmark(UAED, MuGE)

BSDS500

  • the samples placed in the order UAED, MuGE, DSDN

Humans or Animals

  • poor performance about humans or animals detection.(Noise sensitive & too many detect detail informations)

376086
376086_uaed 376086_muge 376086_sdn

198087
198087_uaed 198087_muge 198087_sdn

Structures

  • good performance about structures than humans or animals detection.

48017
48017_uaed 48017_muge 48017_sdn

120093
120093_uaed 120093_muge 120093_sdn

Anime

Pictures(like above examples)

  • good performance about pictures than sota edge detection networks.

6b7bb28262eebebffeb3941db1258c0f5366a7b3
6b7bb28262eebebffeb3941db1258c0f5366a7b3_uaed 6b7bb28262eebebffeb3941db1258c0f5366a7b3_muge 6b7bb28262eebebffeb3941db1258c0f5366a7b3 png

fbd362241e3e84b52ccd40f70d627fcc9b5dbdd1
fbd362241e3e84b52ccd40f70d627fcc9b5dbdd1_uaed fbd362241e3e84b52ccd40f70d627fcc9b5dbdd1_muge fbd362241e3e84b52ccd40f70d627fcc9b5dbdd1 png

About

Sketch detection network with deformable convolution

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published