Skip to content

Commit

Permalink
Merge pull request #38 from seldon-code/inertial_model
Browse files Browse the repository at this point in the history
Activity Driven Inertial model
  • Loading branch information
amritagos authored Mar 25, 2024
2 parents f7386a3 + c28c2f3 commit c061e83
Show file tree
Hide file tree
Showing 16 changed files with 761 additions and 343 deletions.
34 changes: 34 additions & 0 deletions examples/ActivityDrivenInertial/conf.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
[simulation]
model = "ActivityDrivenInertial"
# rng_seed = 120 # Leaving this empty will pick a random seed

[io]
n_output_network = 20 # Write the network every 20 iterations
n_output_agents = 1 # Write the opinions of agents after every iteration
print_progress = true # Print the iteration time ; if not set, then does not print

[model]
max_iterations = 500 # If not set, max iterations is infinite

[ActivityDrivenInertial]
dt = 0.01 # Timestep for the integration of the coupled ODEs
m = 10 # Number of agents contacted, when the agent is active
eps = 0.01 # Minimum activity epsilon; a_i belongs to [epsilon,1]
gamma = 2.1 # Exponent of activity power law distribution of activities
reciprocity = 0.65 # probability that when agent i contacts j via weighted reservoir sampling, j also sends feedback to i. So every agent can have more than m incoming connections
homophily = 1.0 # aka beta. if zero, agents pick their interaction partners at random
alpha = 3.0 # Controversialness of the issue, must be greater than 0.
K = 2.0
mean_activities = false # Use the mean value of the powerlaw distribution for the activities of all agents
mean_weights = false # Use the meanfield approximation of the network edges

reluctances = true # Assigns a "reluctance" (m_i) to each agent. By default; false and every agent has a reluctance of 1
reluctance_mean = 1.0 # Mean of distribution before drawing from a truncated normal distribution (default set to 1.0)
reluctance_sigma = 0.25 # Width of normal distribution (before truncating)
reluctance_eps = 0.01 # Minimum such that the normal distribution is truncated at this value

friction_coefficient = 1.0 # Friction coefficient, making agents tend to go to rest without acceleration

[network]
number_of_agents = 1000
connections_per_agent = 10
68 changes: 68 additions & 0 deletions include/agents/inertial_agent.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
#pragma once

#include "agent.hpp"
#include "agent_io.hpp"
#include <util/misc.hpp>

namespace Seldon
{

struct InertialAgentData
{
double opinion = 0; // x_i
double activity = 0; // alpha_i
double reluctance = 1.0; // m_i
double velocity = 0.0; // d(x_i)/dt
};

using InertialAgent = Agent<InertialAgentData>;

template<>
inline std::string agent_to_string<InertialAgent>( const InertialAgent & agent )
{
return fmt::format(
"{}, {}, {}, {}", agent.data.opinion, agent.data.velocity, agent.data.activity, agent.data.reluctance );
}

template<>
inline std::string opinion_to_string<InertialAgent>( const InertialAgent & agent )
{
return fmt::format( "{}", agent.data.opinion );
}

template<>
inline InertialAgent agent_from_string<InertialAgent>( const std::string & str )
{
InertialAgent res{};

auto callback = [&]( int idx_list, std::string & substr )
{
if( idx_list == 0 )
{
res.data.opinion = std::stod( substr );
}
else if( idx_list == 1 )
{
res.data.velocity = std::stod( substr );
}
else if( idx_list == 2 )
{
res.data.activity = std::stod( substr );
}
else if( idx_list == 3 )
{
res.data.reluctance = std::stod( substr );
}
};

Seldon::parse_comma_separated_list( str, callback );

return res;
};

template<>
inline std::vector<std::string> agent_to_string_column_names<InertialAgent>()
{
return { "opinion", "velocity", "activity", "reluctance" };
}
} // namespace Seldon
11 changes: 9 additions & 2 deletions include/config_parser.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,8 @@ namespace Seldon::Config
enum class Model
{
DeGroot,
ActivityDrivenModel,
ActivityDrivenModel, // @TODO : no need for model here
ActivityDrivenInertial,
DeffuantModel
};

Expand Down Expand Up @@ -81,6 +82,11 @@ struct ActivityDrivenSettings
double covariance_factor = 0.0;
};

struct ActivityDrivenInertialSettings : public ActivityDrivenSettings
{
double friction_coefficient = 1.0;
};

struct InitialNetworkSettings
{
std::optional<std::string> file;
Expand All @@ -90,7 +96,8 @@ struct InitialNetworkSettings

struct SimulationOptions
{
using ModelVariantT = std::variant<DeGrootSettings, ActivityDrivenSettings, DeffuantSettings>;
using ModelVariantT
= std::variant<DeGrootSettings, ActivityDrivenSettings, ActivityDrivenInertialSettings, DeffuantSettings>;
Model model;
std::string model_string;
int rng_seed = std::random_device()();
Expand Down
2 changes: 1 addition & 1 deletion include/connectivity.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ class TarjanConnectivityAlgo
{
lowest[v] = std::min( lowest[v], num[u] );
} // u not processed
} // u has been visited
} // u has been visited
}

// Now v has been processed
Expand Down
18 changes: 18 additions & 0 deletions include/model_factory.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
#include "models/ActivityDrivenModel.hpp"
#include "models/DeGroot.hpp"
#include "models/DeffuantModel.hpp"
#include "models/InertialModel.hpp"
#include "network.hpp"
#include <memory>
#include <random>
Expand Down Expand Up @@ -61,6 +62,23 @@ create_model_activity_driven( Network<AgentT> & network, const ModelVariantT & m
}
}

template<typename AgentT>
inline auto create_model_activity_driven_inertial(
Network<AgentT> & network, const ModelVariantT & model_settings, std::mt19937 & gen )
{
if constexpr( std::is_same_v<AgentT, InertialModel::AgentT> )
{
auto settings = std::get<Config::ActivityDrivenInertialSettings>( model_settings );
auto model = std::make_unique<InertialModel>( settings, network, gen );
return model;
}
else
{
throw std::runtime_error( "Incompatible agent and model type!" );
return std::unique_ptr<Model<AgentT>>{};
}
}

template<typename AgentT>
inline auto create_model_deffuant( Network<AgentT> & network, const ModelVariantT & model_settings, std::mt19937 & gen )
{
Expand Down
Loading

0 comments on commit c061e83

Please sign in to comment.