-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
92a438e
commit 85149d5
Showing
1 changed file
with
33 additions
and
32 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,4 @@ | ||
<div align="center"> | ||
🔴🔴🔴🔴🔴🔴🔴🔴🔴🔴🔴🔴Under Construction🔴🔴🔴🔴🔴🔴🔴🔴🔴🔴🔴🔴 | ||
|
||
|
||
<img src="images/logo-with-background.png" alt="OntoAligner Logo"/> | ||
</div> | ||
|
||
|
@@ -21,29 +18,37 @@ | |
**OntoAligner** is a Python library designed to simplify ontology alignment and matching for researchers, practitioners, and developers. With a modular architecture and robust features, OntoAligner provides powerful tools to bridge ontologies effectively. | ||
|
||
|
||
## Installation | ||
## 🧪 Installation | ||
|
||
OntoAligner is available on PyPI and can be installed with pip: | ||
You can install **OntoAligner** from PyPI using `pip`: | ||
|
||
```bash | ||
pip install ontoaligner | ||
``` | ||
|
||
Alternatively, install the latest version directly from the source: | ||
Alternatively, to get the latest version directly from the source, use the following commands: | ||
|
||
```bash | ||
git clone [email protected]:sciknoworg/OntoAligner.git | ||
pip install ./ontoaligner | ||
``` | ||
|
||
|
||
## Documentation | ||
## 📚 Documentation | ||
|
||
Comprehensive documentation for OntoAligner, including detailed guides and examples, is available at **[ontoaligner.readthedocs.io](https://ontoaligner.readthedocs.io/)**. | ||
|
||
--- | ||
**Tutorials** | ||
|
||
## Quick Tour | ||
| Example | Tutorial | Script | | ||
|:-------------------------------|:----------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------:| | ||
| Lightweight | [📚 Fuzzy Matching](https://ontoaligner.readthedocs.io/tutorials/lightweight.html) | [📝 Code](https://github.com/sciknoworg/OntoAligner/blob/main/examples/fuzzy_matching.py) | | ||
| Retrieval | [📚 Retrieval Aligner](https://ontoaligner.readthedocs.io/tutorials/retriever.html) | [📝 Code](https://github.com/sciknoworg/OntoAligner/blob/main/examples/retriever_matching.py) | | ||
| Large Language Models | [📚 Large Language Models Aligner](https://ontoaligner.readthedocs.io/tutorials/llm.html) | [📝 Code](https://github.com/sciknoworg/OntoAligner/blob/main/examples/llm_matching.py) | | ||
| Retrieval Augmented Generation | [📚 Retrieval Augmented Generation](https://ontoaligner.readthedocs.io/tutorials/rag.html) | [📝 Code](https://github.com/sciknoworg/OntoAligner/blob/main/examples/rag_matching.py)| | ||
| FewShot | [📚 FewShot RAG](https://ontoaligner.readthedocs.io/tutorials/rag.html#fewshot-rag) | [📝 Code](https://github.com/sciknoworg/OntoAligner/blob/main/examples/rag_matching.py) | ||
| In-Context Vectors Learning | [📚 In-Context Vectors RAG](https://ontoaligner.readthedocs.io/tutorials/rag.html#in-context-vectors-rag) | [📝 Code](https://github.com/sciknoworg/OntoAligner/blob/main/examples/icv_rag_matching.py) | ||
|
||
## 🚀 Quick Tour | ||
|
||
Below is an example of using Retrieval-Augmented Generation (RAG) for ontology matching: | ||
|
||
|
@@ -71,33 +76,22 @@ encoder_model = ConceptParentRAGEncoder() | |
encoded_ontology = encoder_model(source=dataset['source'], target=dataset['target']) | ||
|
||
# Step 4: Define configuration for retriever and LLM | ||
retriever_config = { | ||
"device": 'cuda', | ||
"top_k": 5, | ||
} | ||
llm_config = { | ||
"device": "cuda", | ||
"max_length": 300, | ||
"max_new_tokens": 10, | ||
"batch_size": 15, | ||
} | ||
retriever_config = {"device": 'cuda', "top_k": 5,} | ||
llm_config = {"device": "cuda", "max_length": 300, "max_new_tokens": 10, "batch_size": 15} | ||
|
||
# Step 5: Initialize Generate predictions using RAG-based ontology matcher | ||
model = MistralLLMBERTRetrieverRAG(retriever_config=retriever_config, | ||
llm_config=llm_config) | ||
predicts = model.generate(input_data=encoded_ontology) | ||
|
||
# Step 6: Apply hybrid postprocessing | ||
hybrid_matchings, hybrid_configs = rag_hybrid_postprocessor( | ||
predicts=predicts, | ||
ir_score_threshold=0.1, | ||
llm_confidence_th=0.8 | ||
) | ||
hybrid_matchings, hybrid_configs = rag_hybrid_postprocessor(predicts=predicts, | ||
ir_score_threshold=0.1, | ||
llm_confidence_th=0.8) | ||
|
||
evaluation = metrics.evaluation_report(predicts=hybrid_matchings, | ||
references=dataset['reference']) | ||
print("Hybrid Matching Evaluation Report:", json.dumps(evaluation, indent=4)) | ||
print("Hybrid Matching Obtained Configuration:", hybrid_configs) | ||
print("Hybrid Matching Evaluation Report:", evaluation) | ||
|
||
# Step 7: Convert matchings to XML format and save the XML representation | ||
xml_str = xmlify.xml_alignment_generator(matchings=hybrid_matchings) | ||
|
@@ -106,18 +100,16 @@ with open("matchings.xml", "w", encoding="utf-8") as xml_file: | |
``` | ||
|
||
|
||
## Contribution | ||
## ⭐ Contribution | ||
|
||
We welcome contributions to enhance OntoAligner and make it even better! Please review our contribution guidelines in [CONTRIBUTING.md](CONTRIBUTING.md) before getting started. Your support is greatly appreciated. | ||
|
||
|
||
|
||
## Contact | ||
[//]: # (## 📧 Contact) | ||
|
||
If you encounter any issues or have questions, please submit them in the [GitHub issues tracker](https://github.com/sciknoworg/OntoAligner/issues). | ||
|
||
|
||
## Citation | ||
## 💡 Acknowledgements | ||
|
||
If you use OntoAligner in your work or research, please cite the following: | ||
|
||
|
@@ -129,3 +121,12 @@ If you use OntoAligner in your work or research, please cite the following: | |
year = {2024}, | ||
url = {https://github.com/HamedBabaei/OntoAligner}, | ||
} | ||
``` | ||
|
||
<p> | ||
This software is licensed under the | ||
<a href="https://opensource.org/licenses/MIT" target="_blank">MIT License</a>. | ||
</p> | ||
<a href="https://opensource.org/licenses/MIT" target="_blank"> | ||
<img src="https://img.shields.io/badge/License-MIT-blue.svg" alt="MIT License"> | ||
</a> |