Skip to content

Commit

Permalink
Managed database setup
Browse files Browse the repository at this point in the history
  • Loading branch information
Laure-di committed Sep 24, 2024
1 parent 73f71c2 commit 4328de4
Showing 1 changed file with 64 additions and 34 deletions.
98 changes: 64 additions & 34 deletions tutorials/how-to-implement-rag/index.mdx
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
---
meta:
title: How to implement RAG with managed inference
description:
description: Learn how to implement Retrieval-Augmented Generation (RAG) using Scaleway's managed inference, PostgreSQL, pgvector, and object storage.
content:
h1: How to implement RAG with managed inference
tags: inference managed postgresql pgvector object storage
tags: inference, managed, postgresql, pgvector, object storage
categories:
- inference
---
Expand All @@ -14,47 +14,77 @@ Scaleway's robust infrastructure makes it easier than ever to implement RAG, as
By utilizing our managed inference services, managed databases, and object storage, you can effortlessly build and deploy a customized model tailored to your specific needs.

<Macro id="requirements" />

- A Scaleway account logged into the [console](https://console.scaleway.com)
- [Owner](/identity-and-access-management/iam/concepts/#owner) status or [IAM permissions](/identity-and-access-management/iam/concepts/#permission) allowing you to perform actions in the intended Organization
- [Inference Deployment](/ai-data/managed-inference/how-to/create-deployment/): Set up an inference deployment using [sentence-transformers/sentence-t5-xxl](/ai-data/managed-inference/reference-content/sentence-t5-xxl/) on an L4 instance to efficiently process embeddings.
- [Inference Deployment](/ai-data/managed-inference/how-to/create-deployment/) with the model of your choice.
- [Object Storage Bucket](/storage/object/how-to/create-a-bucket/) to store all the data you want to inject into your LLM model.
- [Managed Database](/managed-databases/postgresql-and-mysql/how-to/create-a-database/) to securely store all your embeddings.

## Configure your developement environnement
## Configure your development environment

1. Install necessary packages: run the following command to install the required packages:

```sh
pip install langchain psycopg2 python-dotenv scaleway
```
2. Configure your environnement variables: create a .env file and add the following variables. These will store your API keys, database connection details, and other configuration values.
2. Configure your environment variables: create a .env file and add the following variables. These will store your API keys, database connection details, and other configuration values.

```sh
# .env file

# Scaleway API credentials
SCW_ACCESS_KEY=your_scaleway_access_key
SCW_SECRET_KEY=your_scaleway_secret_key
SCW_API_KEY=your_scaleway_api_key

# Scaleway project and region
SCW_DEFAULT_PROJECT_ID=your_scaleway_project_id
SCW_DEFAULT_REGION=your_scaleway_region

# Scaleway managed database (PostgreSQL) credentials
SCW_DB_NAME=your_scaleway_managed_db_name
SCW_DB_USER=your_scaleway_managed_db_username
SCW_DB_PASSWORD=your_scaleway_managed_db_password
SCW_DB_HOST=your_scaleway_managed_db_host # The IP address of your database instance
SCW_DB_PORT=your_scaleway_managed_db_port # The port number for your database instance

# Scaleway S3 bucket configuration
SCW_BUCKET_NAME=your_scaleway_bucket_name
SCW_BUCKET_ENDPOINT=your_scaleway_bucket_endpoint # S3 endpoint, e.g., https://s3.fr-par.scw.cloud

# Scaleway Inference API configuration (Embeddings)
SCW_INFERENCE_EMBEDDINGS_ENDPOINT=your_scaleway_inference_embeddings_endpoint # Endpoint for sentence-transformers/sentence-t5-xxl deployment
SCW_INFERENCE_API_KEY_EMBEDDINGS=your_scaleway_api_key_for_embeddings

# Scaleway Inference API configuration (LLM deployment)
SCW_INFERENCE_DEPLOYMENT_ENDPOINT=your_scaleway_inference_endpoint # Endpoint for your LLM deployment
SCW_INFERENCE_API_KEY=your_scaleway_api_key_for_inference_deployment
```
# .env file

# Scaleway API credentials
SCW_ACCESS_KEY=your_scaleway_access_key
SCW_SECRET_KEY=your_scaleway_secret_key
SCW_API_KEY=your_scaleway_api_key

# Scaleway project and region
SCW_DEFAULT_PROJECT_ID=your_scaleway_project_id
SCW_DEFAULT_REGION=your_scaleway_region

# Scaleway managed database (PostgreSQL) credentials
SCW_DB_NAME=your_scaleway_managed_db_name
SCW_DB_USER=your_scaleway_managed_db_username
SCW_DB_PASSWORD=your_scaleway_managed_db_password
SCW_DB_HOST=your_scaleway_managed_db_host # The IP address of your database instance
SCW_DB_PORT=your_scaleway_managed_db_port # The port number for your database instance

# Scaleway S3 bucket configuration
SCW_BUCKET_NAME=your_scaleway_bucket_name
SCW_BUCKET_ENDPOINT=your_scaleway_bucket_endpoint # S3 endpoint, e.g., https://s3.fr-par.scw.cloud

# Scaleway Inference API configuration (Embeddings)
SCW_INFERENCE_EMBEDDINGS_ENDPOINT=your_scaleway_inference_embeddings_endpoint # Endpoint for sentence-transformers/sentence-t5-xxl deployment
SCW_INFERENCE_API_KEY_EMBEDDINGS=your_scaleway_api_key_for_embeddings

# Scaleway Inference API configuration (LLM deployment)
SCW_INFERENCE_DEPLOYMENT_ENDPOINT=your_scaleway_inference_endpoint # Endpoint for your LLM deployment
SCW_INFERENCE_API_KEY=your_scaleway_api_key_for_inference_deployment
```

### Set Up Managed Database

1. Connect to your PostgreSQL instance and install the pg_vector extension.

```python
conn = psycopg2.connect(
database="your_database_name",
user="your_db_user",
password=os.getenv("SCW_DB_PASSWORD"),
host="your_db_host",
port="your_db_port"
)

cur = conn.cursor()

# Install pg_vector extension
cur.execute("CREATE EXTENSION IF NOT EXISTS vector;")
conn.commit()
```
2. Create a table to keep track of the documents loaded from your S3 bucket. So you can add new object to your bucket and they won't be download and vectorize twice

```python
cur.execute("CREATE TABLE IF NOT EXISTS object_loaded (id SERIAL PRIMARY KEY, object_key TEXT)")
conn.commit()
```

0 comments on commit 4328de4

Please sign in to comment.