Skip to content

Commit

Permalink
Merge pull request #3 from madvorak/main
Browse files Browse the repository at this point in the history
scribe 6 complete
  • Loading branch information
saona-raimundo authored Nov 18, 2023
2 parents df03433 + c1c33ed commit 94bd0ec
Show file tree
Hide file tree
Showing 2 changed files with 24 additions and 3 deletions.
27 changes: 24 additions & 3 deletions class_6.tex
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ \chapter{Class 6}
Formal system $F$ is consistent unless $\vdash \bot$ (or equivalently, there exists a formula that is not a theorem).
Rule $R$ is derivable in $F$ iff [for all formulas $\phi$, $\underset{F \cup \{R\}}\vdash \phi$ iff $\underset{F}\vdash \phi$].
Rule $R$ is admissible in $F$ iff $F \cup \{R\}$ is still consistent.
Formula $\phi$ is expressible in a logic $L$ iff [there exists a formula $\psi$ of $L$ such that, for all interpretations $v$, $[[ \phi ]]_v = [[ \psi ]]_v$. %`⟦φ⟧ᵥ = ⟦ψ⟧ᵥ`].
Formula $\phi$ is expressible in a logic $L$ iff [there exists a formula $\psi$ of $L$ such that, for all interpretations $v$, $[[ \phi ]]_v = [[ \psi ]]_v$.
For example $\phi_1 \wedge \phi_2$ is expressible using only $\neg$ and $\vee$ (de Morgan)
as $\psi = \neg(\neg\phi_1 \wedge \neg\phi_2)$.

Expand Down Expand Up @@ -70,9 +70,30 @@ \section{Hilbert formal system for propositional logic}
\phi\rightarrow\psi\rightarrow\phi$
\item (S): $\qquad
(\phi\rightarrow\psi\rightarrow\chi)\rightarrow((\phi\rightarrow\psi)\rightarrow(\phi\rightarrow\chi))$
\item (EM): $\qquad
\item (em): $\qquad
(\neg\phi\rightarrow\neg\psi)\rightarrow(\psi\rightarrow\phi)$
\end{itemize}
TODO
Example (prove $\phi \rightarrow \phi$ in Hilbert system):\\
(K) $\phi \rightarrow (\psi \rightarrow \phi) \rightarrow \phi$\\
(S) $(\phi \rightarrow (\psi \rightarrow \phi) \rightarrow \phi) \rightarrow ((\phi \rightarrow \psi \rightarrow \phi) \rightarrow (\phi \rightarrow \phi))$\\
(MP) $(\phi \rightarrow \psi \rightarrow \phi) \rightarrow (\phi \rightarrow \phi)$\\
(K) $\phi \rightarrow \psi \rightarrow \phi$\\
(MP) $\phi \rightarrow \phi$\bigskip\\
Notation: $\Gamma \vdash \phi$ means $\underset{F \,\cup\, \Gamma}\vdash \phi$ (the set of formulas $\Gamma$ is used as added axioms)\\
Metatheorem (``deduction theorem''):
$\Gamma \vdash \phi \rightarrow \psi$ iff $\Gamma, \phi \vdash \psi$\\
Metaproof:\\
``$\implies$'': One application of modus ponens.\\
``$\impliedby$'':
Assume $\psi$ has a proof $\pi$ using axioms $\Gamma$, $\phi$, (K), (S), (em).
Show that $\phi \rightarrow \psi$ has a proof $\pi'$ using $\Gamma$, (K), (S), (em) --- induction on length $n$ of $\pi$.\\
Case $n=1$: $\psi$ must be an axiom.
Either $\psi \in \Gamma \cup \{\textup{K}, \textup{S}, \textup{em}\}$ so we prove it by (K),
or $\psi = \phi$ so we use $\vdash \phi \rightarrow \phi$ as derived above.\\
Case $n>1$: $\psi$ is the result of an application of modus ponens.
We have $\chi$ and $\chi \rightarrow \psi$, both of which were derived from $\Gamma, \phi$ in fewer steps.
Induction hypothesis gives us $\Gamma \vdash \phi \rightarrow \chi$ and $\Gamma \vdash \phi \rightarrow \chi \rightarrow \psi$.
We use (S) in the form $(\phi \rightarrow \chi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi) \rightarrow (\phi \rightarrow \psi)$ and apply modus ponens twice,
resulting in $\phi \rightarrow \psi$ derived from $\Gamma$ only.

}} % End localization of command definitions
Binary file modified main.pdf
Binary file not shown.

0 comments on commit 94bd0ec

Please sign in to comment.