Skip to content

sagarutturkar/RNASeq_DE_Pipeline

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Pipeline for Differential Expression (DE) analysis in R

This is the generic pipeline to perform pairwise DE analysis from the count matrix. It is designed to work with pairwise design i.e. typical Treatment Vs Control experiment type for various biological conditions. This pipeline performs following operations:

  1. Read the input count matrix (pairwise design only).
  2. Generate visualizations for exploratory analysis (PCA, Dendrogram, distance boxplot, sample-distance heatmap).
  3. Perform DE analysis using DESeq2 and edgeR packages.
  4. Determine DE genes at two significance cutoffs (FDR <= 0.01 and FDR <= 0.05) and generate output tables with annotation.
  5. Additional visualizations for DE results (MA plots, Venn diagrams).
  6. Generate GSEA Pre-ranked list (DESeq2 based) for GSEA analysis.

Prerequisites:

Pipeline assume working R environment is available with following packages installed.

library(DESeq2)
library(ggplot2)
library(gplots)
library(tidyverse)
library(RColorBrewer)
library(pheatmap)
library(edgeR)
library(VennDiagram)

Expected input:

1. Complete Count matrix (typically obtained from HTSeq or similar tool):

Example: The first column should have strict name Gene_ID, followed by control and treatment replicates denoted with numbers.

Gene_ID control1 control2 control3 treated1 treated2 treated3
ENSG00000000003 1013 664 978 1090 1074 1025
ENSG00000000005 0 0 0 0 1 0
ENSG00000000419 1322 860 1145 1264 1301 1163
ENSG00000000457 83 87 67 94 165 105
ENSG00000000460 305 262 258 261 376 237
ENSG00000000938 2 0 0 0 0 1

2. Annotation file (typically downloaded from the ENSEMBL or similar database):

Example:

Gene_ID Gene type Gene name Gene description
ENSG00000229147 unprocessed_pseudogene SMPD4P2 sphingomyelin phosphodiesterase 4 pseudogene 2 [Source:HGNC Symbol;Acc:HGNC:39674]
ENSG00000256453 protein_coding DND1 DND microRNA-mediated repression inhibitor 1 [Source:HGNC Symbol;Acc:HGNC:23799]
ENSG00000185813 protein_coding PCYT2 phosphate cytidylyltransferase 2, ethanolamine [Source:HGNC Symbol;Acc:HGNC:8756]
ENSG00000268861 protein_coding AC008878.3 Rho/Rac guanine nucleotide exchange factor 18 [Source:NCBI gene;Acc:23370]
ENSG00000281782 unprocessed_pseudogene AC093642.6 F-box protein 25 (FBXO25) pseudogene
ENSG00000176749 protein_coding CDK5R1 cyclin dependent kinase 5 regulatory subunit 1 [Source:HGNC Symbol;Acc:HGNC:1775]

Quick start:

Clone of download the repository:

git clone https://github.com/sagarutturkar/RNASeq_DE_Pipeline.git

Syntax (for Rstudio)

system("RScript DE_pairwise_pipeline.R   <Count_Matrix>  <Control_Name>  <Treatment_Name>  <Number_of_Control_replicates>  <Number_of_Treatment_replicates>  <Annotation.TXT>")

system("RScript Make_venn.R  DESeq2_FDR005_filtered.tsv  edgeR_FDR005_filtered.tsv DESeq2  edgeR  <custom_TAG> <Annotation.TXT>")

Working Example (for Rstudio)

system("RScript DE_pairwise_pipeline.R   C1.TXT  control  treated  3  3  Annotation.TXT")

system("RScript Make_venn.R  DESeq2_FDR005_filtered.tsv  edgeR_FDR005_filtered.tsv DESeq2  edgeR  FDR005   Annotation.TXT")

On Linux (command line):

cd test_data

Rscript ../DE_pairwise_pipeline.R C1.txt  control  treated  3  3  Annotation.txt

Rscript ../Make_Venn.R DESeq2_FDR005_filtered.tsv  edgeR_FDR005_filtered.tsv DESeq2  edgeR  FDR005   Annotation.txt

Output files summary:

Note:

Result tables are TAB delimited TEXT files and best viewed when opened in Excel.

File Type File Name File Description
Log Files sessioninfo.txt Session Info for the current run
edgeR_log.txt Log from the edgeR package
DESeq2_log.txt Log from the DESeq2 package
Rdata Files edgeR_results.RData edgeR results stored as Rdata Object
DESeq2_results.RData DESeq2 results stored as Rdata Object
Exploratory data visualizations DESeq2_Cluster_Dendrogram.png Cluster dendrogram for control and treatment samples
DESeq2_Cooks_distance_boxplot.png Boxplot showing the distribution of Cook’s distances for each library
Sample_distance_matrix.png Heatmap showing the Euclidian distances between samples
DESeq2_PCA_with_Labels.png PCA plot with lables
edgeR_mds.png PCA plot from edgeR
DESeq2 Result Tables DESeq2_All.tsv Complete Table from DESeq2 (no filter)
DESeq2_FDR001_filtered.tsv DESeq2 significant DE genes (FDR <= 0.01)
DESeq2_FDR005_filtered.tsv DESeq2 significant DE genes (FDR <= 0.05)
edgeR Result Tables edgeR_All.tsv Complete Table from edgeR (no filter)
edgeR_FDR001_filtered.tsv edgeR significant DE genes (FDR <= 0.01)
edgeR_FDR005_filtered.tsv edgeR significant DE genes (FDR <= 0.05)
DE Result visualizations edgeR_smear.png MA plot from edgeR
DESeq2_MA.png MA plot from DESeq2
Comaprison of DESeq2 and edgeR FDR005_Overlap.tsv Table for the overlapping DE genes (FDR <= 0.05)
FDR005_Venn.png Venn diagram for overlap between DESeq2 and edgeR DE genes at FDR <= 0.05
GSEA Pre-ranked file GSEA.rnk GSEA pre-ranked file

Example plots generated through pipeline:

Figure A

Example data:

Eample data is provided in the directory test_data. It contains a random counts matrix and annotations (Human).

Steps:

  1. Download the two R scripts (DE_pairwise_pipeline.R and Make_Venn.R).
  2. Download the test_data directory.
  3. Run the R scripts as below:
system("RScript DE_pairwise_pipeline.R   C1.TXT  control  treated  3  3  Annotation.TXT")

system("RScript Make_venn.R  DESeq2_FDR005_filtered.tsv  edgeR_FDR005_filtered.tsv DESeq2  edgeR   FDR005   Annotation.TXT")

system("RScript Make_venn.R  DESeq2_FDR001_filtered.tsv  edgeR_FDR001_filtered.tsv DESeq2  edgeR   FDR001   Annotation.TXT")

Runtime: On standrad laptop with 1 processor, the run with test data should complete under 10 minutes.

About

Pipeline for Differential Expression (DE) analysis in R

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages