forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add dataloader for limesoda * Remove comment-outs and blank lines * Rename df to entries * Rename limesoda_raw to limesoda * Change the "limesoda" in config name to _DATASETNAME * add _LANGUAGES constant * Fix the case on LimeSodaDataset * Add `_LOCAL` variable
- Loading branch information
Showing
2 changed files
with
172 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
import json | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@INPROCEEDINGS{9678187, | ||
author={Payoungkhamdee, Patomporn and Porkaew, Peerachet and Sinthunyathum, Atthasith and Songphum, Phattharaphon and Kawidam, Witsarut and Loha-Udom, Wichayut and Boonkwan, Prachya and Sutantayawalee, Vipas}, | ||
booktitle={2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)}, | ||
title={LimeSoda: Dataset for Fake News Detection in Healthcare Domain}, | ||
year={2021}, | ||
volume={}, | ||
number={}, | ||
pages={1-6}, | ||
doi={10.1109/iSAI-NLP54397.2021.9678187}} | ||
""" | ||
|
||
_DATASETNAME = "limesoda" | ||
|
||
_DESCRIPTION = """\ | ||
Thai fake news dataset in the healthcare domain consisting of curate and manually annotated 7,191 documents | ||
(only 4,141 documents contain token labels and are used as a test set of the baseline models). | ||
Each document in the dataset is classified as fact, fake, or undefined. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/byinth/LimeSoda" | ||
|
||
_LICENSE = Licenses.CC_BY_4_0.value | ||
|
||
_LANGUAGES = ["tha"] | ||
_LOCAL = False | ||
|
||
_URLS = { | ||
"split": { | ||
"train": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/train_v1.jsonl", | ||
"val": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/val_v1.jsonl", | ||
"test": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/test_v1.jsonl", | ||
}, | ||
"raw": "https://raw.githubusercontent.com/byinth/LimeSoda/main/LimeSoda/Limesoda.jsonl", | ||
} | ||
|
||
_SUPPORTED_TASKS = [Tasks.HOAX_NEWS_CLASSIFICATION] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class LimeSodaDataset(datasets.GeneratorBasedBuilder): | ||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_source", | ||
version=SOURCE_VERSION, | ||
description="limesoda source schema", | ||
schema="source", | ||
subset_id=_DATASETNAME, | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_split_source", | ||
version=SOURCE_VERSION, | ||
description="limesoda source schema", | ||
schema="source", | ||
subset_id=f"{_DATASETNAME}_split", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_text", | ||
version=SEACROWD_VERSION, | ||
description="limesoda SEACrowd schema", | ||
schema="seacrowd_text", | ||
subset_id=_DATASETNAME, | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_split_seacrowd_text", | ||
version=SEACROWD_VERSION, | ||
description="limesoda: split SEACrowd schema", | ||
schema="seacrowd_text", | ||
subset_id=f"{_DATASETNAME}_split", | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
if self.config.subset_id == "limesoda": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value("string"), | ||
"title": datasets.Value("string"), | ||
"detail": datasets.Sequence(datasets.Value("string")), | ||
"title_token_tags": datasets.Value("string"), | ||
"detail_token_tags": datasets.Sequence(datasets.Value("string")), | ||
"document_tag": datasets.Value("string"), | ||
} | ||
) | ||
else: | ||
features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string"), "document_tag": datasets.Value("string")}) | ||
elif self.config.schema == "seacrowd_text": | ||
features = schemas.text_features(["Fact News", "Fake News", "Undefined"]) | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
path_dict = dl_manager.download_and_extract(_URLS) | ||
if self.config.subset_id == "limesoda": | ||
raw_path = path_dict["raw"] | ||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepath": raw_path, | ||
}, | ||
), | ||
] | ||
elif self.config.subset_id == "limesoda_split": | ||
train_path, val_path, test_path = path_dict["split"]["train"], path_dict["split"]["val"], path_dict["split"]["test"] | ||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepath": train_path, | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={ | ||
"filepath": test_path, | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.VALIDATION, | ||
gen_kwargs={ | ||
"filepath": val_path, | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: | ||
with open(filepath, "r") as f: | ||
entries = [json.loads(line) for line in f.readlines()] | ||
if self.config.schema == "source": | ||
if self.config.subset_id == "limesoda": | ||
for i, row in enumerate(entries): | ||
ex = {"id": str(i), "title": row["Title"], "detail": row["Detail"], "title_token_tags": row["Title Token Tags"], "detail_token_tags": row["Detail Token Tags"], "document_tag": row["Document Tag"]} | ||
yield i, ex | ||
else: | ||
for i, row in enumerate(entries): | ||
ex = {"id": str(i), "text": row["Text"], "document_tag": row["Document Tag"]} | ||
yield i, ex | ||
elif self.config.schema == "seacrowd_text": | ||
for i, row in enumerate(entries): | ||
ex = { | ||
"id": str(i), | ||
"text": row["Detail"] if self.config.subset_id == "limesoda" else row["Text"], | ||
"label": row["Document Tag"], | ||
} | ||
yield i, ex |