forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request SEACrowd#27 from ljvmiranda921/add/cebuaner
Closes SEACrowd#23 | Add CebuaNER data loader
- Loading branch information
Showing
2 changed files
with
193 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
from pathlib import Path | ||
from typing import Dict, Iterable, List, Tuple | ||
|
||
import datasets | ||
from datasets.download.download_manager import DownloadManager | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = r""" | ||
@misc{pilar2023cebuaner, | ||
title={CebuaNER: A New Baseline Cebuano Named Entity Recognition Model}, | ||
author={Ma. Beatrice Emanuela Pilar and Ellyza Mari Papas and Mary Loise Buenaventura and Dane Dedoroy and Myron Darrel Montefalcon and Jay Rhald Padilla and Lany Maceda and Mideth Abisado and Joseph Marvin Imperial}, | ||
year={2023}, | ||
eprint={2310.00679}, | ||
archivePrefix={arXiv}, | ||
primaryClass={cs.CL} | ||
} | ||
""" | ||
|
||
_LOCAL = False | ||
_LANGUAGES = ["ceb"] | ||
_DATASETNAME = "cebuaner" | ||
_DESCRIPTION = """\ | ||
The CebuaNER dataset contains 4000+ news articles that have been tagged by | ||
native speakers of Cebuano usin gthe BIO encoding schema for the named entity | ||
recognition (NER) task. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/mebzmoren/CebuaNER" | ||
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value | ||
_URLS = { | ||
"annotator_1": "https://github.com/mebzmoren/CebuaNER/raw/main/data/annotated_data/final-1.txt", | ||
"annotator_2": "https://github.com/mebzmoren/CebuaNER/raw/main/data/annotated_data/final-2.txt", | ||
} | ||
|
||
# The alignment between annotators is high, and both can be used as gold-standard data. | ||
# Hence, we chose the first value on the index. | ||
_DEFAULT_ANNOTATOR = "annotator_1" | ||
|
||
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] | ||
_SOURCE_VERSION = "1.0.0" | ||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class CebuaNERDataset(datasets.GeneratorBasedBuilder): | ||
"""CebuaNER dataset from https://github.com/mebzmoren/CebuaNER""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
SEACROWD_SCHEMA_NAME = "seq_label" | ||
LABEL_CLASSES = [ | ||
"O", | ||
"B-PER", | ||
"I-PER", | ||
"B-ORG", | ||
"I-ORG", | ||
"B-LOC", | ||
"I-LOC", | ||
"B-OTHER", | ||
"I-OTHER", | ||
] | ||
|
||
# There are two annotators in the CebuaNER dataset but there's no canonical | ||
# label. Here, we decided to create loaders for both annotators. The | ||
# inter-annotator reliability is high so it's possible to treat either as | ||
# gold-standard data. | ||
dataset_names = sorted([f"{_DATASETNAME}_{annot}" for annot in _URLS.keys()]) | ||
BUILDER_CONFIGS = [] | ||
for name in dataset_names: | ||
source_config = SEACrowdConfig( | ||
name=f"{name}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=name, | ||
) | ||
BUILDER_CONFIGS.append(source_config) | ||
seacrowd_config = SEACrowdConfig( | ||
name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
subset_id=name, | ||
) | ||
BUILDER_CONFIGS.append(seacrowd_config) | ||
|
||
# Create a configuration that loads the annotations of the first annotator | ||
# and treat that as the default. | ||
BUILDER_CONFIGS.extend([ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=_DATASETNAME, | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
subset_id=_DATASETNAME, | ||
), | ||
]) | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value("string"), | ||
"tokens": datasets.Sequence(datasets.Value("string")), | ||
"ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=self.LABEL_CLASSES)), | ||
} | ||
) | ||
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
features = schemas.seq_label_features(self.LABEL_CLASSES) | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: | ||
if self.config.subset_id == _DATASETNAME: | ||
url = _URLS[_DEFAULT_ANNOTATOR] | ||
else: | ||
_, annotator = self.config.subset_id.split("_", 1) | ||
url = _URLS[annotator] | ||
data_file = Path(dl_manager.download_and_extract(url)) | ||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={"filepath": data_file, "split": "train"}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.VALIDATION, | ||
gen_kwargs={"filepath": data_file, "split": "dev"}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={"filepath": data_file, "split": "test"}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | ||
label_key = "ner_tags" if self.config.schema == "source" else "labels" | ||
examples: Iterable[Dict[str, List[str]]] = [] | ||
with open(filepath, encoding="utf-8") as f: | ||
tokens = [] | ||
ner_tags = [] | ||
for line in f: | ||
# There's no clear delimiter in the IOB file so I'm separating each example based on the newline. | ||
# The -DOCSTART- delimiter only shows up in the very first example. In their notebook example | ||
# https://github.com/mebzmoren/CebuaNER/blob/main/notebooks/Named-Entity-Recognition-with-Conditional-Random-Fields.ipynb, | ||
# they used '' as their article delimiter. | ||
if line.startswith("-DOCSTART-") or line == "" or line == "\n": | ||
if tokens: | ||
examples.append({"tokens": tokens, label_key: ner_tags}) | ||
if len(tokens) != len(ner_tags): | ||
raise ValueError(f"Tokens and tags are not aligned! {len(tokens)} != {len(ner_tags)}") | ||
tokens = [] | ||
ner_tags = [] | ||
else: | ||
# CebuaNER iob are separated by spaces | ||
token, _, _, ner_tag = line.split(" ") | ||
tokens.append(token) | ||
ner_tags.append(ner_tag.rstrip()) | ||
if tokens: | ||
examples.append({"tokens": tokens, label_key: ner_tags}) | ||
if len(tokens) != len(ner_tags): | ||
raise ValueError(f"Tokens and tags are not aligned! {len(tokens)} != {len(ner_tags)}") | ||
|
||
# The CebuaNER paper doesn't provide a recommended split. However, the Github repository | ||
# contains a notebook example of the split they used in the report: | ||
# https://github.com/mebzmoren/CebuaNER/blob/main/notebooks/Named-Entity-Recognition-with-Conditional-Random-Fields.ipynb | ||
if split == "train": | ||
final_examples = examples[0:2980] | ||
if split == "test": | ||
final_examples = examples[2980:3831] | ||
if split == "dev": | ||
final_examples = examples[3831:] | ||
|
||
for idx, eg in enumerate(final_examples): | ||
eg["id"] = idx | ||
yield idx, eg |