forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Implement dataloaders for UIT_VSFC * fix a bug * Apply suggestions from code review Co-authored-by: Lj Miranda <[email protected]> * remove unneccesary lines in file and add __init__.py --------- Co-authored-by: Lj Miranda <[email protected]>
- Loading branch information
1 parent
89fdde0
commit 741fa27
Showing
2 changed files
with
203 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@inproceedings{van2018uit, | ||
title={UIT-VSFC: Vietnamese students’ feedback corpus for sentiment analysis}, | ||
author={Van Nguyen, Kiet and Nguyen, Vu Duc and Nguyen, Phu XV and Truong, Tham TH and Nguyen, Ngan Luu-Thuy}, | ||
booktitle={2018 10th international conference on knowledge and systems engineering (KSE)}, | ||
pages={19--24}, | ||
year={2018}, | ||
organization={IEEE} | ||
} | ||
""" | ||
|
||
|
||
_DATASETNAME = "uit_vsfc" | ||
|
||
_DESCRIPTION = """\ | ||
This corpus consists of student feedback obtained from end-of-semester surveys at a Vietnamese university. | ||
Feedback is classified into four possible topics: lecturer, curriculum, facility or others. | ||
Feedback is also labeled as one of three sentiment polarities: positive, negative or neutral. | ||
""" | ||
|
||
_HOMEPAGE = "https://drive.google.com/drive/folders/1HooABJyrddVGzll7fgkJ6VzkG_XuWfRu" | ||
|
||
_LANGUAGES = ["vie"] | ||
|
||
_LICENSE = Licenses.UNKNOWN.value | ||
|
||
_LOCAL = False | ||
|
||
|
||
_URLS = { | ||
"train": { | ||
"sentences": "https://drive.google.com/uc?id=1nzak5OkrheRV1ltOGCXkT671bmjODLhP&export=download", | ||
"sentiments": "https://drive.google.com/uc?id=1ye-gOZIBqXdKOoi_YxvpT6FeRNmViPPv&export=download", | ||
"topics": "https://drive.google.com/uc?id=14MuDtwMnNOcr4z_8KdpxprjbwaQ7lJ_C&export=download", | ||
}, | ||
"validation": { | ||
"sentences": "https://drive.google.com/uc?id=1sMJSR3oRfPc3fe1gK-V3W5F24tov_517&export=download", | ||
"sentiments": "https://drive.google.com/uc?id=1GiY1AOp41dLXIIkgES4422AuDwmbUseL&export=download", | ||
"topics": "https://drive.google.com/uc?id=1DwLgDEaFWQe8mOd7EpF-xqMEbDLfdT-W&export=download", | ||
}, | ||
"test": { | ||
"sentences": "https://drive.google.com/uc?id=1aNMOeZZbNwSRkjyCWAGtNCMa3YrshR-n&export=download", | ||
"sentiments": "https://drive.google.com/uc?id=1vkQS5gI0is4ACU58-AbWusnemw7KZNfO&export=download", | ||
"topics": "https://drive.google.com/uc?id=1_ArMpDguVsbUGl-xSMkTF_p5KpZrmpSB&export=download", | ||
}, | ||
} | ||
|
||
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS, Tasks.TOPIC_MODELING] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class UITVSFCDataset(datasets.GeneratorBasedBuilder): | ||
"""This corpus consists of student feedback obtained from end-of-semester surveys at a Vietnamese university. | ||
Feedback is classified into four possible topics: lecturer, curriculum, facility or others. | ||
Feedback is also labeled as one of three sentiment polarities: positive, negative or neutral.""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
SENTIMENT_LABEL_CLASSES = ["positive", "negative", "neutral"] | ||
TOPIC_LABEL_CLASSES = ["lecturer", "training_program", "others", "facility"] | ||
|
||
SEACROWD_SCHEMA_NAME = "text" | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_sentiment_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=_DATASETNAME, | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_topic_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=_DATASETNAME, | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_sentiment_seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
subset_id=_DATASETNAME, | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_topic_seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
subset_id=_DATASETNAME, | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"sentence": datasets.Value("string"), | ||
"sentiment": datasets.ClassLabel(names=self.SENTIMENT_LABEL_CLASSES), | ||
"topic": datasets.ClassLabel(names=self.TOPIC_LABEL_CLASSES), | ||
} | ||
) | ||
elif self.config.name == f"{_DATASETNAME}_sentiment_seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
features = schemas.text_features(self.SENTIMENT_LABEL_CLASSES) | ||
elif self.config.name == f"{_DATASETNAME}_topic_seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
features = schemas.text_features(self.TOPIC_LABEL_CLASSES) | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
data_dir = dl_manager.download(_URLS) | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"sentences_path": data_dir["train"]["sentences"], | ||
"sentiments_path": data_dir["train"]["sentiments"], | ||
"topics_path": data_dir["train"]["topics"], | ||
"split": "train", | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={ | ||
"sentences_path": data_dir["test"]["sentences"], | ||
"sentiments_path": data_dir["test"]["sentiments"], | ||
"topics_path": data_dir["test"]["topics"], | ||
"split": "test", | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.VALIDATION, | ||
gen_kwargs={ | ||
"sentences_path": data_dir["validation"]["sentences"], | ||
"sentiments_path": data_dir["validation"]["sentiments"], | ||
"topics_path": data_dir["validation"]["topics"], | ||
"split": "dev", | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, sentences_path: Path, sentiments_path: Path, topics_path: Path, split: str) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
|
||
if self.config.schema == "source": | ||
with open(sentences_path, encoding="utf-8") as sentences, open(sentiments_path, encoding="utf-8") as sentiments, open(topics_path, encoding="utf-8") as topics: | ||
for key, (sentence, sentiment, topic) in enumerate(zip(sentences, sentiments, topics)): | ||
yield key, { | ||
"sentence": sentence.strip(), | ||
"sentiment": int(sentiment.strip()), | ||
"topic": int(topic.strip()), | ||
} | ||
|
||
elif self.config.name == f"{_DATASETNAME}_sentiment_seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
with open(sentences_path, encoding="utf-8") as sentences, open(sentiments_path, encoding="utf-8") as sentiments: | ||
for key, (sentence, sentiment) in enumerate(zip(sentences, sentiments)): | ||
yield key, {"id": str(key), "text": sentence.strip(), "label": int(sentiment.strip())} | ||
elif self.config.name == f"{_DATASETNAME}_topic_seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
with open(sentences_path, encoding="utf-8") as sentences, open(topics_path, encoding="utf-8") as topics: | ||
for key, (sentence, topic) in enumerate(zip(sentences, topics)): | ||
yield key, { | ||
"id": str(key), | ||
"text": sentence.strip(), | ||
"label": int(topic.strip()), | ||
} |