forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
…#490) * create dataloader for indonglish * make subset_id unique, use ClassLabel for label
- Loading branch information
Showing
2 changed files
with
216 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,216 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import csv | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@article{Astuti2023, | ||
title = {Code-Mixed Sentiment Analysis using Transformer for Twitter Social Media Data}, | ||
journal = {International Journal of Advanced Computer Science and Applications}, | ||
doi = {10.14569/IJACSA.2023.0141053}, | ||
url = {http://dx.doi.org/10.14569/IJACSA.2023.0141053}, | ||
year = {2023}, | ||
publisher = {The Science and Information Organization}, | ||
volume = {14}, | ||
number = {10}, | ||
author = {Laksmita Widya Astuti and Yunita Sari and Suprapto} | ||
} | ||
""" | ||
|
||
_DATASETNAME = "indonglish" | ||
_DESCRIPTION = """\ | ||
Indonglish-dataset was constructed based on keywords derived from the | ||
sociolinguistic phenomenon observed among teenagers in South Jakarta. The | ||
dataset was designed to tackle the semantic task of sentiment analysis, | ||
incorporating three distinct label categories: positive, negative, and | ||
neutral. The annotation of the dataset was carried out by a panel of five | ||
annotators, each possessing expertise language and data science. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/laksmitawidya/indonglish-dataset" | ||
_LANGUAGES = ["ind"] | ||
_LICENSE = Licenses.UNKNOWN.value | ||
_LOCAL = False | ||
|
||
_URLS = { | ||
"skenario-orig": { | ||
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/train.csv", | ||
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/validation.csv", | ||
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/test.csv", | ||
}, | ||
"skenario1": { | ||
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/training.csv", | ||
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/validation.csv", | ||
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/test.csv", | ||
}, | ||
"skenario2": { | ||
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/training.csv", | ||
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/validation.csv", | ||
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/test.csv", | ||
}, | ||
"skenario3": { | ||
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/training.csv", | ||
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/validation.csv", | ||
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/test.csv", | ||
}, | ||
} | ||
|
||
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class Indonglish(datasets.GeneratorBasedBuilder): | ||
"""Indonglish dataset for sentiment analysis from https://github.com/laksmitawidya/indonglish-dataset.""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
SEACROWD_SCHEMA_NAME = "text" | ||
_LABELS = ["Positif", "Negatif", "Netral"] | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=_DATASETNAME, | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
subset_id=_DATASETNAME, | ||
), | ||
] | ||
for i in range(1, 4): | ||
BUILDER_CONFIGS += [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_skenario{i}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=f"{_DATASETNAME}_skenario{i}", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_skenario{i}_seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | ||
subset_id=f"{_DATASETNAME}_skenario{i}", | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
|
||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value("string"), | ||
"tweet": datasets.Value("string"), | ||
"label": datasets.ClassLabel(names=self._LABELS), | ||
} | ||
) | ||
|
||
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
features = schemas.text_features(self._LABELS) | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
|
||
if "skenario" in self.config.name: | ||
setting = self.config.name.split("_")[1] | ||
else: | ||
setting = "skenario-orig" | ||
|
||
data_paths = { | ||
setting: { | ||
"train": Path(dl_manager.download_and_extract(_URLS[setting]["train"])), | ||
"validation": Path(dl_manager.download_and_extract(_URLS[setting]["validation"])), | ||
"test": Path(dl_manager.download_and_extract(_URLS[setting]["test"])), | ||
} | ||
} | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepath": data_paths[setting]["train"], | ||
"split": "train", | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={ | ||
"filepath": data_paths[setting]["test"], | ||
"split": "test", | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.VALIDATION, | ||
gen_kwargs={ | ||
"filepath": data_paths[setting]["validation"], | ||
"split": "dev", | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
|
||
# read csv file | ||
with open(filepath, "r", encoding="utf-8") as csv_file: | ||
csv_reader = csv.reader(csv_file) | ||
csv_data = [row for row in csv_reader] | ||
csv_data = csv_data[1:] # remove header | ||
|
||
num_sample = len(csv_data) | ||
|
||
for i in range(num_sample): | ||
if self.config.schema == "source": | ||
example = { | ||
"id": str(i), | ||
"tweet": csv_data[i][0], | ||
"label": csv_data[i][1], | ||
} | ||
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | ||
example = { | ||
"id": str(i), | ||
"text": csv_data[i][0], | ||
"label": csv_data[i][1], | ||
} | ||
|
||
yield i, example |