Skip to content

Commit

Permalink
Add huggingface submodule and GPT2 model (facebookresearch#1019)
Browse files Browse the repository at this point in the history
Summary: Pull Request resolved: fairinternal/fairseq-py#1019

Differential Revision: D20044785

Pulled By: myleott

fbshipit-source-id: 022a49f696c0093d577422af5598f6f326022569
  • Loading branch information
myleott authored and facebook-github-bot committed Feb 25, 2020
1 parent ed4aa2c commit 2728f9b
Show file tree
Hide file tree
Showing 4 changed files with 188 additions and 0 deletions.
3 changes: 3 additions & 0 deletions .gitmodules
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
[submodule "fairseq/models/huggingface/transformers"]
path = fairseq/models/huggingface/transformers
url = https://github.com/huggingface/transformers.git
6 changes: 6 additions & 0 deletions fairseq/models/huggingface/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from .hf_gpt2 import * # noqa
178 changes: 178 additions & 0 deletions fairseq/models/huggingface/hf_gpt2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,178 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
import os
import sys
from typing import Dict, List, Optional

import torch
from fairseq.models import (
FairseqIncrementalDecoder,
FairseqLanguageModel,
register_model,
register_model_architecture,
)


logger = logging.getLogger(__name__)


DEFAULT_MAX_TARGET_POSITIONS = 1024


@register_model('hf_gpt2')
class HuggingFaceGPT2LanguageModel(FairseqLanguageModel):

def __init__(self, decoder):
super().__init__(decoder)

@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
parser.add_argument('--embed-dim', type=int, metavar='N',
help='embedding dimension')
parser.add_argument('--num-attention-heads', type=int, metavar='N',
help='num attention heads')
parser.add_argument('--num-layers', type=int, metavar='N',
help='num layers')
parser.add_argument('--dropout', type=float, metavar='D',
help='dropout probability for all fully connected layers '
'in the embeddings, encoder, and pooler')
parser.add_argument('--attention-dropout', type=float, metavar='D',
help='dropout probability for attention weights')
# fmt: on

@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
default_architecture(args)
return cls(HuggingFaceGPT2Decoder(args, task))


class HuggingFaceGPT2Decoder(FairseqIncrementalDecoder):

def __init__(self, args, task):
super().__init__(task.target_dictionary)

try:
# Prepend the transformers submodule to the path, so that
# it's prioritized over other installations. This allows
# making local changes in the submodule.
sys.path.insert(
0, os.path.join(os.path.dirname(__file__), 'transformers', 'src')
)
from transformers import GPT2Config, GPT2LMHeadModel
except ImportError:
raise ImportError(
'\n\nPlease install huggingface/transformers with:'
'\n\n pip install transformers'
'\n\nOr to make local edits, install the submodule:'
'\n\n git submodule update --init '
'fairseq/models/huggingface/transformers'
)

config = GPT2Config(
vocab_size=len(task.target_dictionary),
n_positions=args.max_target_positions,
n_ctx=args.max_target_positions,
n_embd=args.embed_dim,
n_layer=args.num_layers,
n_head=args.num_attention_heads,
resid_pdrop=args.dropout,
embd_pdrop=args.dropout,
attn_pdrop=args.attention_dropout,
layer_norm_epsilon=1e-6,
)
self.model = GPT2LMHeadModel(config)

# set zero embedding for padding symbol
self.pad_idx = task.target_dictionary.pad()
self.model.transformer.wte.weight.data[self.pad_idx].zero_()
self.model.transformer.wpe.weight.data[0].zero_()

def forward(
self,
prev_output_tokens,
src_lengths=None,
incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None,
):
features = self.extract_features(prev_output_tokens, incremental_state)
lm_logits = self.model.lm_head(features)
return (lm_logits, )

def extract_features(
self,
prev_output_tokens,
incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None,
):
if incremental_state is not None:
past = self.get_incremental_state("past")
else:
past = None

# don't attend to padding symbols
attention_mask = prev_output_tokens.ne(self.pad_idx).int()

# set position ids to exclude padding symbols
position_ids = attention_mask * (
torch.arange(1, 1 + prev_output_tokens.size(1))
.to(prev_output_tokens)
.repeat(prev_output_tokens.size(0), 1)
)

outputs = self.model.transformer(
input_ids=prev_output_tokens,
past=past,
attention_mask=attention_mask,
position_ids=position_ids,
)
last_hidden_states = outputs[0]

if incremental_state is not None:
self.set_incremental_state(incremental_state, "past", outputs[1])

return last_hidden_states

def max_positions(self):
return self.model.config.n_positions


@register_model_architecture('hf_gpt2', 'hf_gpt2')
def default_architecture(args):
if getattr(args, 'max_target_positions', None) is None:
args.max_target_positions = getattr(
args, 'tokens_per_sample', DEFAULT_MAX_TARGET_POSITIONS
)
args.embed_dim = getattr(args, 'embed_dim', 768)
args.num_attention_heads = getattr(args, 'num_attention_heads', 12)
args.num_layers = getattr(args, 'num_layers', 12)
args.dropout = getattr(args, 'dropout', 0.1)
args.attention_dropout = getattr(args, 'attention_dropout', 0.1)


@register_model_architecture('hf_gpt2', 'hf_gpt2_medium')
def hf_gpt2_medium(args):
args.embed_dim = getattr(args, 'embed_dim', 1024)
args.num_attention_heads = getattr(args, 'num_attention_heads', 16)
args.num_layers = getattr(args, 'num_layers', 24)
default_architecture(args)


@register_model_architecture('hf_gpt2', 'hf_gpt2_large')
def hf_gpt2_large(args):
args.embed_dim = getattr(args, 'embed_dim', 1280)
args.num_attention_heads = getattr(args, 'num_attention_heads', 20)
args.num_layers = getattr(args, 'num_layers', 36)
default_architecture(args)


@register_model_architecture('hf_gpt2', 'hf_gpt2_xl')
def hf_gpt2_xl(args):
args.embed_dim = getattr(args, 'embed_dim', 1600)
args.num_attention_heads = getattr(args, 'num_attention_heads', 25)
args.num_layers = getattr(args, 'num_layers', 48)
default_architecture(args)
1 change: 1 addition & 0 deletions fairseq/models/huggingface/transformers
Submodule transformers added at d426b5

0 comments on commit 2728f9b

Please sign in to comment.