Skip to content

A collaborative filtering based recommender system built using Apache Mahout

Notifications You must be signed in to change notification settings

rnakade/Recommendation-System

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Recommendation-System

A collaborative filtering based recommender system built using Apache Mahout.

This is a collaborative filtering based recommender system built using Apache Mahout. A recommender system that uses collaborative filtering provides recommendations to users based on the collective preferences of many users. Apache Mahout is an open source software library for implementing a collaborative filtering recommender system.

There are two basic approaches to a collaborative filtering recommender system: user-based recommendations and item-based recommendations.

Item-Based Recommender: Given a particular item i, an item-based recommender will recommend other items similar to i based on a metric that calculates the similarity between two items. Here is the pseudo-code for generating recommendations:

for every item i for which user u does not yet have a preference value: for every item j for which u has a preference value: compute similarity s between i and j add u’s computed preference for j, weighted by s, to a running average preference for i return the top items, ranked by weighted average

User Based Recommender: Given a particular customer u, a user-based recommender will recommend items for i based on i’s similarity to other users and those other users preferences. Here is the pseudo-code:

for every item i for which user u does not yet have a preference value: for every other user v that has a preference for i: compute a similarity s between u and v incorporate v’s preference for i, weighted by s, into a running average preference for i return the top items, ranked by weighted average

The above pseudo-code is pretty computationally heavy because you need to loop through every user for every item for which user u doesn’t have a preference value. To decrease the computational load we generate a user neighborhood for each user and only consider a user’s neighborhood when computing the similarity value:

for every other user w: compute a similarity s between user u and w retain the top users, ranked by similarity s, as a neighbor n

for every item i that some user in n has preference for, but for which u does not yet have a preference: for every other user v in n that has a preference for i: compute a similarity s between u and v incorporate v’s preference for i, weighted by s, into a running average for item i return the top items, ranked by weighted average

About

A collaborative filtering based recommender system built using Apache Mahout

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages