Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
rkuo2000 authored Dec 23, 2023
1 parent 4d42856 commit 0486248
Show file tree
Hide file tree
Showing 2 changed files with 498 additions and 0 deletions.
253 changes: 253 additions & 0 deletions _posts/2023-12-12-LLM.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,253 @@
---
layout: post
title: Large Language Models
author: [Richard Kuo]
category: [Lecture]
tags: [jekyll, ai]
---

Introduction to Large Language Models (LLMs), LLM in Vision, etc.

---
## History of LLM
[A Survey of Large Language Models](https://arxiv.org/abs/2303.18223)<br>
*Since the introduction of Transformer model in 2017, large language models (LLMs) have evolved significantly.*<br>
*ChatGPT saw 1.6B visits in May 2023.*<br>
*Meta also released three versions of LLaMA-2 (7B, 13B, 70B) free for commercial use in July.*<br>

---
### 從解題能力來看四代語言模型的演進
An evolution process of the four generations of language models (LM) from the perspective of task solving capacity.<br>
![](https://d3i71xaburhd42.cloudfront.net/c61d54644e9aedcfc756e5d6fe4cc8b78c87755d/2-Figure2-1.png)

---
### 大型語言模型統計表
![](https://d3i71xaburhd42.cloudfront.net/c61d54644e9aedcfc756e5d6fe4cc8b78c87755d/8-Table1-1.png)

---
### 近年大型語言模型(>10B)的時間軸
![](https://d3i71xaburhd42.cloudfront.net/c61d54644e9aedcfc756e5d6fe4cc8b78c87755d/9-Figure3-1.png)

---
### 大型語言模型之產業分類
![](https://substackcdn.com/image/fetch/w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F2e8bfd65-5272-4cf1-8b86-954bab975bab_2400x1350.png)

---
### 大型語言模型之技術分類
![](https://miro.medium.com/v2/resize:fit:1100/format:webp/1*vZK250i8PIWid6BiaZ1QCA.png)

---
### 計算記憶體的成長與Transformer大小的關係
[AI and Memory Wall](https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8)<br>
![](https://miro.medium.com/v2/resize:fit:4800/format:webp/0*U-7GJqBZ2tY1W5Iu)

---
### LLMops 針對生成式 AI 用例調整了 MLops 技術堆疊
![](https://www.insightpartners.com/wp-content/uploads/2023/10/llmops-market-map-1.png)

---
## Large Language Models

### ChatGPT
[ChatGPT: Optimizing Language Models for Dialogue](https://openai.com/blog/chatgpt/)<br>
ChatGPT is fine-tuned from a model in the GPT-3.5 series, which finished training in early 2022.<br>

![](https://cdn.openai.com/chatgpt/draft-20221129c/ChatGPT_Diagram.svg)

<iframe width="640" height="455" src="https://www.youtube.com/embed/e0aKI2GGZNg" title="Chat GPT (可能)是怎麼煉成的 - GPT 社會化的過程" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>

---
### GPT4
**Paper:** [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774)<br>
![](https://image-cdn.learnin.tw/bnextmedia/image/album/2023-03/img-1679884936-23656.png?w=1200&output=webp)
**Paper:** [From Sparse to Dense: GPT-4 Summarization with Chain of Density Prompting](https://arxiv.org/abs/2309.04269)<br>
**Blog:** [GPT-4 Code Interpreter: The Next Big Thing in AI](https://medium.com/@aaabulkhair/gpt-4-code-interpreter-the-next-big-thing-in-ai-56bbf72d746)<br>

---
### Open LLMs
**[Open LLM leardboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)**<br>

---
### [LLaMA](https://huggingface.co/docs/transformers/main/model_doc/llama)
*It is a collection of foundation language models ranging from 7B to 65B parameters.*<br>
**Paper:** [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)<br>
![](https://miro.medium.com/v2/resize:fit:1100/format:webp/1*nt-ydHhSVsaLXq_HZRaLQA.png)

---
### [OpenLLaMA](https://github.com/openlm-research/open_llama)
**model:** [https://huggingface.co/openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2)<br>
**Kaggle:** [https://www.kaggle.com/code/rkuo2000/llm-openllama](https://www.kaggle.com/code/rkuo2000/llm-openllama)<br>

---
**Blog:** [Building a Million-Parameter LLM from Scratch Using Python](https://levelup.gitconnected.com/building-a-million-parameter-llm-from-scratch-using-python-f612398f06c2)<br>
**Kaggle:** [LLM LLaMA from scratch](https://www.kaggle.com/rkuo2000/llm-llama-from-scratch/)<br>

---
### Pythia
**Paper:** [Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling](https://arxiv.org/abs/2304.01373)<br>
**Dataset:** <br>
[The Pile: An 800GB Dataset of Diverse Text for Language Modeling](https://arxiv.org/abs/2101.00027)<br>
[Datasheet for the Pile](https://arxiv.org/abs/2201.07311)<br>
**Code:** [Pythia: Interpreting Transformers Across Time and Scale](https://github.com/EleutherAI/pythia)<br>

---
### Falcon-40B
**Paper:** [The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only](https://arxiv.org/abs/2306.01116)<br>
**Dataset:** [https://huggingface.co/datasets/tiiuae/falcon-refinedweb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)<br>
**Code:** [https://huggingface.co/tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b)<br>

---
### LLaMA-2
**Paper:** [Llama 2: Open Foundation and Fine-Tuned Chat Models](https://arxiv.org/abs/2307.09288)<br>
**Code:** [https://github.com/facebookresearch/llama](https://github.com/facebookresearch/llama)<br>
**models:** [https://huggingface.co/meta-llama](https://huggingface.co/meta-llama)<br>

---
### Orca
**Paper:** [Orca: Progressive Learning from Complex Explanation Traces of GPT-4](https://arxiv.org/abs/2306.02707)<br>

---
### Vicuna
**Paper:** [Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena](https://arxiv.org/abs/2306.05685)<br>
**model:** [https://huggingface.co/lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5)<br>
**Code:** [https://github.com/lm-sys/FastChat](https://github.com/lm-sys/FastChat)<br>

---
### [Platypus](https://platypus-llm.github.io/)
**Paper:** [Platypus: Quick, Cheap, and Powerful Refinement of LLMs](https://arxiv.org/abs/2308.07317)<br>
**Code:** [https://github.com/arielnlee/Platypus/](https://github.com/arielnlee/Platypus/)<br>

---
### Mistral
**Paper:** [Mistral 7B](https://arxiv.org/abs/2310.06825)<br>
**Code:** [https://github.com/mistralai/mistral-src](https://github.com/mistralai/mistral-src)<br>
**Kaggle:** [https://www.kaggle.com/code/rkuo2000/llm-mistral-7b-instruct](https://www.kaggle.com/code/rkuo2000/llm-mistral-7b-instruct)<br>
![](https://www.promptingguide.ai/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Fmistral-7B-2.8625353c.png&w=1920&q=75)

---
### Mistral 8X7B
![](https://miro.medium.com/v2/resize:fit:720/format:webp/0*91yEJMc_q-QlU-bk.png)

---
### Zephyr
**Paper:** [Zephyr: Direct Distillation of LM Alignment](https://arxiv.org/abs/2310.16944)<br>
**Code:** [https://huggingface.co/HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)<br>
**Kaggle:** [https://www.kaggle.com/code/rkuo2000/llm-zephyr-7b](https://www.kaggle.com/code/rkuo2000/llm-zephyr-7b)<br>
![](https://i3.res.bangqu.com/farm/liang/news/2023/10/28/9e3a1a498f94b147fd57608b4beaefe0.jpg)

---
**Blog:** [Zephyr-7B : HuggingFace’s Hyper-Optimized LLM Built on Top of Mistral 7B](https://www.unite.ai/zephyr-7b-huggingfaces-hyper-optimized-llm-built-on-top-of-mistral-7b/)<br>
![](https://www.unite.ai/wp-content/uploads/2023/11/Knowledge-distillation-r.png)
![](https://www.unite.ai/wp-content/uploads/2023/11/knowledge-distillation.png)
![](https://www.unite.ai/wp-content/uploads/2023/11/Model-Performace-768x418.png)

---
### SOLAR-10.7B ~ Depth Upscaling
**Code:** [https://huggingface.co/upstage/SOLAR-10.7B-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-v1.0)<br>
Depth-Upscaled SOLAR-10.7B has remarkable performance. It outperforms models with up to 30B parameters, even surpassing the recent Mixtral 8X7B model.<br>
Leveraging state-of-the-art instruction fine-tuning methods, including supervised fine-tuning (SFT) and direct preference optimization (DPO),
researchers utilized a diverse set of datasets for training. This fine-tuned model, SOLAR-10.7B-Instruct-v1.0, achieves a remarkable Model H6 score of 74.20,
boasting its effectiveness in single-turn dialogue scenarios.<br>

---
### Phi-2 (Transformer with 2.7B parameters)
**Blog:** [Phi-2: The surprising power of small language models](https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/)<br>
**Code:** [https://huggingface.co/microsoft/phi-2](https://huggingface.co/microsoft/phi-2)<br>
**Kaggle:** [https://www.kaggle.com/code/rkuo2000/llm-phi-2](https://www.kaggle.com/code/rkuo2000/llm-phi-2)<br>

---
### Orca 2
**Paper:** [https://arxiv.org/abs/2311.11045](https://arxiv.org/abs/2311.11045)<br>
**model:** [Orca 2: Teaching Small Language Models How to Reason](https://huggingface.co/microsoft/Orca-2-13b)<br>
**Blog:** [Microsoft's Orca 2 LLM Outperforms Models That Are 10x Larger](https://www.infoq.com/news/2023/12/microsoft-orca-2-llm/)<br>
<p><img src="https://s4.itho.me/sites/default/files/images/1123-Orca-2-microsoft-600.png" width="50%" height="50%"></p>

---
**Paper:** [Variety and Quality over Quantity: Towards Versatile Instruction Curation](https://arxiv.org/abs/2312.11508)<br>

---
### [Next-GPT](https://next-gpt.github.io/)
**Paper:** [Any-to-Any Multimodal Large Language Model](https://arxiv.org/abs/2309.05519)<br>
![](https://next-gpt.github.io/static/images/framework.png)

---
### MLLM FineTuning
**Paper:** [Tuning LayerNorm in Attention: Towards Efficient Multi-Modal LLM Finetuning](https://arxiv.org/abs/2312.11420)<br>

---
## LLM in Vision
**Papers:** [https://github.com/DirtyHarryLYL/LLM-in-Vision](https://github.com/DirtyHarryLYL/LLM-in-Vision)<br>

---
### VisionLLM
**Paper:** [VisionLLM: Large Language Model is also an Open-Ended Decoder for Vision-Centric Tasks](https://arxiv.org/abs/2305.11175)<br>
![](https://api.wandb.ai/files/byyoung3/images/projects/37269171/01ab3dba.png)

---
### MiniGPT-v2
**Paper:** [MiniGPT-v2: Large Language Model as a Unified Interface for Vision-Language Multi-task Learning](https://arxiv.org/abs/2310.09478)<br>
**Code:** [https://github.com/Vision-CAIR/MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4)<br>
![](https://github.com/Vision-CAIR/MiniGPT-4/raw/main/figs/minigpt2_demo.png)

---
### GPT4-V
**Paper:** [Assessing GPT4-V on Structured Reasoning Tasks](https://arxiv.org/abs/2312.11524)<br>

---
### Gemini
**Paper:** [Gemini: A Family of Highly Capable Multimodal Models](https://arxiv.org/abs/2312.11805)<br>
![](https://github.com/rkuo2000/AI-course/blob/main/images/Gemini.png?raw=true)

---
### [LLaVA](https://llava-vl.github.io/)
**Paper:** [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485)<br>
**Paper:** [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744)<br>
**Code:** [https://github.com/haotian-liu/LLaVA](https://github.com/haotian-liu/LLaVA)<br>
**Demo:** [https://llava.hliu.cc/](https://llava.hliu.cc/)

---
### [VLFeedback and Silkie](https://vlf-silkie.github.io/)
A GPT-4V annotated preference dataset for large vision language models.
**Paper:** [Silkie: Preference Distillation for Large Visual Language Models](https://arxiv.org/abs/2312.10665)<br>
**Code:** [https://github.com/vlf-silkie/VLFeedback](https://github.com/vlf-silkie/VLFeedback)<br>
![](https://github.com/vlf-silkie/VLFeedback/raw/main/imgs/annotate_framework.png)

---
## LLM in Robotics
**Paper:** [Language-conditioned Learning for Robotic Manipulation: A Survey](https://arxiv.org/abs/2312.10807)<br>

---
**Paper:** [Human Demonstrations are Generalizable Knowledge for Robots](https://arxiv.org/abs/2312.02419)<br>

---
## Advanced Topics

### XoT
**Paper:** [Everything of Thoughts: Defying the Law of Penrose Triangle for Thought Generation](https://arxiv.org/abs/2311.04254)<br>
![](https://miro.medium.com/v2/resize:fit:720/format:webp/0*r_a44DuxG3D8DGZO.png)

---
### FunSearch
[DeepMind發展用LLM解困難數學問題的方法](https://www.ithome.com.tw/news/160354)<br>
![](https://s4.itho.me/sites/default/files/styles/picture_size_large/public/field/image/2108_-_funsearch_making_new_discoveries_in_mathematical_sciences_using_lar_-_deepmind.google.jpg?itok=mAy4ydAE)

---
### [ALTER-LLM](https://tnoinkwms.github.io/ALTER-LLM/)
**Paper:** [From Text to Motion: Grounding GPT-4 in a Humanoid Robot "Alter3"](https://arxiv.org/abs/2312.06571)<br>
<iframe width="593" height="346" src="https://www.youtube.com/embed/SAc-O5FDJ4k" title="play the metal" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
![](https://tnoinkwms.github.io/ALTER-LLM/architecture_2.png)
![](https://tnoinkwms.github.io/ALTER-LLM/feedback.png)

---
### BrainGPT
**Paper:** [DeWave: Discrete EEG Waves Encoding for Brain Dynamics to Text Translation](https://arxiv.org/abs/2309.14030)<br>
**Blog:** [New Mind-Reading "BrainGPT" Turns Thoughts Into Text On Screen](https://www.iflscience.com/new-mind-reading-braingpt-turns-thoughts-into-text-on-screen-72054)<br>
![](https://i3.res.bangqu.com/farm/liang/news/2023/12/18/339b9a2158e1fd28e1e39ee4b1557df2.jpg)
![](https://i3.res.bangqu.com/farm/liang/news/2023/12/18/79ca704627e4cadc1e23afc1b2f029cb.jpg)
<iframe width="993" height="559" src="https://www.youtube.com/embed/crJst7Yfzj4" title="UTS HAI Research - BrainGPT" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>

<br>
<br>

*This site was last updated {{ site.time | date: "%B %d, %Y" }}.*

Loading

0 comments on commit 0486248

Please sign in to comment.