Skip to content

Commit

Permalink
deploy: 62e61c0
Browse files Browse the repository at this point in the history
  • Loading branch information
ricktu288 committed Oct 13, 2024
1 parent d983c2e commit 5ecf8b4
Show file tree
Hide file tree
Showing 12 changed files with 15 additions and 12 deletions.
3 changes: 2 additions & 1 deletion cn/gallery/data.json
Original file line number Diff line number Diff line change
Expand Up @@ -406,7 +406,8 @@
{
"id": "maxwell-fisheye-lens",
"contributors": [
"Stas Fainer"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "麦克斯韦鱼眼透镜",
"description": "<p>麦克斯韦鱼眼透镜(Maxwell fisheye lens)是一个球形介电材料,折射率为 \\(n(\\rho) = \\frac{n_0}{1+(\\frac{\\rho}{R})^2} \\),其中 \\(n_0=2\\) 是其球心的折射率,\\(R=100\\) 是球的半径,\\(\\rho\\) 是与球心的距离。 </p><p>上方的介电材料为由 \\(N=20\\) 个同心球组成的麦克斯韦鱼眼透镜,半径 \\(R_i=5(N+1-i)\\),折射率 \\(n_i = \\frac{n_0}{1+(\\frac{R_i}{R})^2} \\),其中 \\(i=1,...,N\\)。然而,由于此模拟器会将互相重叠的光学元件的折射率相乘,所以第 \\(i\\) 个同心球形镜的数值折射率为 \\(n_{i}^\\text{numerical}=\\frac{n_i}{n_{i-1}}\\)。 </p><p>下方的介电材料是折射率为\\(n(r)\\)的渐变折射率材料。 </p>"
Expand Down
2 changes: 1 addition & 1 deletion cn/gallery/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -510,7 +510,7 @@ <h2>渐变折射率光学</h2>
<img src="maxwell-fisheye-lens-thumbnail.png" alt="Thumbnail" class="img-rounded example-image" loading="lazy">
<div class="caption">
<p class="example-title">麦克斯韦鱼眼透镜</p>
<p class="example-contributor">Stas Fainer</p>
<p class="example-contributor">Stas Fainer, Yi-Ting Tu</p>
</div>
</a>
<a href="branched-flow" class="thumbnail example-container">
Expand Down
2 changes: 1 addition & 1 deletion cn/gallery/maxwell-fisheye-lens.html
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@
<center>
<h1><b><span>麦克斯韦鱼眼透镜</span></b></h1>
<p>
贡献者:Stas Fainer
贡献者:Stas Fainer, Yi-Ting Tu
</p>
<div class="description">
<p>麦克斯韦鱼眼透镜(Maxwell fisheye lens)是一个球形介电材料,折射率为 \(n(\rho) = \frac{n_0}{1+(\frac{\rho}{R})^2} \),其中 \(n_0=2\) 是其球心的折射率,\(R=100\) 是球的半径,\(\rho\) 是与球心的距离。 </p><p>上方的介电材料为由 \(N=20\) 个同心球组成的麦克斯韦鱼眼透镜,半径 \(R_i=5(N+1-i)\),折射率 \(n_i = \frac{n_0}{1+(\frac{R_i}{R})^2} \),其中 \(i=1,...,N\)。然而,由于此模拟器会将互相重叠的光学元件的折射率相乘,所以第 \(i\) 个同心球形镜的数值折射率为 \(n_{i}^\text{numerical}=\frac{n_i}{n_{i-1}}\)。 </p><p>下方的介电材料是折射率为\(n(r)\)的渐变折射率材料。 </p>
Expand Down
2 changes: 1 addition & 1 deletion gallery/data.json
Original file line number Diff line number Diff line change
Expand Up @@ -403,7 +403,7 @@
{
"id": "maxwell-fisheye-lens",
"contributors": [
"Stas Fainer"
"Stas Fainer", "Yi-Ting Tu"
],
"title": "Maxwell fisheye lens",
"description": "<p>This is a simulation of a Maxwell fish-eye lens, which is a spherical dielectric with refractive index \\(n(r) = \\frac{n_0}{1+(\\frac{r}{R})^2} \\), where \\(n_0=2\\) is the refractive index in the center of the lens, \\(R=100\\) is the radius of the lens, and \\(r\\) is the radial distance from the center of the lens.</p><p>The top dielectric is composed of \\(N=20\\) concentric spherical lenses with radius \\(R_i=5(N+1-i)\\) and refractive index \\(n_i = \\frac{n_0}{1+(\\frac{R_i}{R})^2} \\), where \\(i=1,...,N\\). However, since this simulator calculates the effective refractive index of an optical element by multiplying the element's numerical refractive index with the numerical refractive indices of the optical elements which are embedded within it, the numerical refractive index of the \\(i\\)th concentric spherical lens is given by \\(n_{i}^\\text{numerical}=\\frac{n_i}{n_{i-1}}\\).</p><p>The bottom dielectric is a gradient-index material with the refractive index \\(n(r)\\).</p>"
Expand Down
2 changes: 1 addition & 1 deletion gallery/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -510,7 +510,7 @@ <h2>Gradient-index Optics</h2>
<img src="maxwell-fisheye-lens-thumbnail.png" alt="Thumbnail" class="img-rounded example-image" loading="lazy">
<div class="caption">
<p class="example-title">Maxwell fisheye lens</p>
<p class="example-contributor">Stas Fainer</p>
<p class="example-contributor">Stas Fainer, Yi-Ting Tu</p>
</div>
</a>
<a href="branched-flow" class="thumbnail example-container">
Expand Down
2 changes: 1 addition & 1 deletion gallery/maxwell-fisheye-lens.html
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@
<center>
<h1><b><span>Maxwell fisheye lens</span></b></h1>
<p>
Contributor: Stas Fainer
Contributors: Stas Fainer, Yi-Ting Tu
</p>
<div class="description">
<p>This is a simulation of a Maxwell fish-eye lens, which is a spherical dielectric with refractive index \(n(r) = \frac{n_0}{1+(\frac{r}{R})^2} \), where \(n_0=2\) is the refractive index in the center of the lens, \(R=100\) is the radius of the lens, and \(r\) is the radial distance from the center of the lens.</p><p>The top dielectric is composed of \(N=20\) concentric spherical lenses with radius \(R_i=5(N+1-i)\) and refractive index \(n_i = \frac{n_0}{1+(\frac{R_i}{R})^2} \), where \(i=1,...,N\). However, since this simulator calculates the effective refractive index of an optical element by multiplying the element's numerical refractive index with the numerical refractive indices of the optical elements which are embedded within it, the numerical refractive index of the \(i\)th concentric spherical lens is given by \(n_{i}^\text{numerical}=\frac{n_i}{n_{i-1}}\).</p><p>The bottom dielectric is a gradient-index material with the refractive index \(n(r)\).</p>
Expand Down
3 changes: 2 additions & 1 deletion pl/gallery/data.json
Original file line number Diff line number Diff line change
Expand Up @@ -406,7 +406,8 @@
{
"id": "maxwell-fisheye-lens",
"contributors": [
"Stas Fainer"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "Soczewka rybie oko Maxwella",
"description": "<p>To jest symulacja soczewki typu rybie oko Maxwella, która jest sferycznym dielektrykiem o współczynniku załamania światła \\(n(\\rho) = \\frac{n_0}{1+(\\frac{\\rho}{R})^2} \\), gdzie \\(n_0=2\\) to współczynnik załamania w środku soczewki soczewki, \\(R=100\\) to promień soczewki, a \\(\\rho\\) to odległość od środka soczewki.</p><p>Górny dielektryk składa się z \\(N=20\\) koncentrycznych soczewek sferycznych o promieniu \\(R_i=5(N+1-i)\\) i współczynniku załamania światła \\(n_i = \\frac{n_0}{1+(\\frac{R_i}{R})^2} \\), gdzie \\(i=1,...,N\\). Jednakże, ponieważ ten symulator oblicza efektywny współczynnik załamania światła elementu optycznego poprzez pomnożenie współczynnika załamania elementu przez współczynniki załamania elementów optycznych, które są w nim osadzone, współczynnik załamania \\(i\\)-tej koncentrycznej soczewki sferycznej jest określony wzorem \\(n_{i}^\\text{numerical}=\\frac{n_i}{n_{i-1}}\\).</p><p>Dolny dielektryk jest materiałem gradientowym o współczynniku załamania \\(n(r)\\).</p>"
Expand Down
2 changes: 1 addition & 1 deletion pl/gallery/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -510,7 +510,7 @@ <h2>Optyka gradientowa (GRIN)</h2>
<img src="maxwell-fisheye-lens-thumbnail.png" alt="Thumbnail" class="img-rounded example-image" loading="lazy">
<div class="caption">
<p class="example-title">Soczewka rybie oko Maxwella</p>
<p class="example-contributor">Stas Fainer</p>
<p class="example-contributor">Stas Fainer, Yi-Ting Tu</p>
</div>
</a>
<a href="../../gallery/branched-flow" class="thumbnail example-container">
Expand Down
2 changes: 1 addition & 1 deletion pl/gallery/maxwell-fisheye-lens.html
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@
<center>
<h1><b><span>Soczewka rybie oko Maxwella</span></b></h1>
<p>
Osoba wnosząca wkład: Stas Fainer
Osoba wnosząca wkład: Stas Fainer, Yi-Ting Tu
</p>
<div class="description">
<p>To jest symulacja soczewki typu rybie oko Maxwella, która jest sferycznym dielektrykiem o współczynniku załamania światła \(n(\rho) = \frac{n_0}{1+(\frac{\rho}{R})^2} \), gdzie \(n_0=2\) to współczynnik załamania w środku soczewki soczewki, \(R=100\) to promień soczewki, a \(\rho\) to odległość od środka soczewki.</p><p>Górny dielektryk składa się z \(N=20\) koncentrycznych soczewek sferycznych o promieniu \(R_i=5(N+1-i)\) i współczynniku załamania światła \(n_i = \frac{n_0}{1+(\frac{R_i}{R})^2} \), gdzie \(i=1,...,N\). Jednakże, ponieważ ten symulator oblicza efektywny współczynnik załamania światła elementu optycznego poprzez pomnożenie współczynnika załamania elementu przez współczynniki załamania elementów optycznych, które są w nim osadzone, współczynnik załamania \(i\)-tej koncentrycznej soczewki sferycznej jest określony wzorem \(n_{i}^\text{numerical}=\frac{n_i}{n_{i-1}}\).</p><p>Dolny dielektryk jest materiałem gradientowym o współczynniku załamania \(n(r)\).</p>
Expand Down
3 changes: 2 additions & 1 deletion tw/gallery/data.json
Original file line number Diff line number Diff line change
Expand Up @@ -406,7 +406,8 @@
{
"id": "maxwell-fisheye-lens",
"contributors": [
"Stas Fainer"
"Stas Fainer",
"Yi-Ting Tu"
],
"title": "馬克士威魚眼透鏡",
"description": "<p>馬克士威魚眼透鏡(Maxwell fisheye lens)是一個球形介電材料,折射率為 \\(n(\\rho) = \\frac{n_0}{1+(\\frac{\\rho}{R})^2} \\),其中 \\(n_0=2\\) 是其球心的折射率,\\(R=100\\) 是球的半徑,\\(\\rho\\) 是與球心的距離。</p><p>上方的介電材料為由 \\(N=20\\) 個同心球組成的馬克士威魚眼透鏡,半徑 \\(R_i=5(N+1-i)\\),折射率 \\(n_i = \\frac{n_0}{1+(\\frac{R_i}{R})^2} \\),其中 \\(i=1,...,N\\)。然而,由於此模擬器會將互相重疊的光學元件的折射率相乘,所以第 \\(i\\) 個同心球形鏡的數值折射率為 \\(n_{i}^\\text{numerical}=\\frac{n_i}{n_{i-1}}\\)。</p><p>下方的介電材料是折射率為\\(n(r)\\)的漸變折射率材料。</p>"
Expand Down
2 changes: 1 addition & 1 deletion tw/gallery/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -510,7 +510,7 @@ <h2>漸變折射率光學</h2>
<img src="maxwell-fisheye-lens-thumbnail.png" alt="Thumbnail" class="img-rounded example-image" loading="lazy">
<div class="caption">
<p class="example-title">馬克士威魚眼透鏡</p>
<p class="example-contributor">Stas Fainer</p>
<p class="example-contributor">Stas Fainer, Yi-Ting Tu</p>
</div>
</a>
<a href="branched-flow" class="thumbnail example-container">
Expand Down
2 changes: 1 addition & 1 deletion tw/gallery/maxwell-fisheye-lens.html
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@
<center>
<h1><b><span>馬克士威魚眼透鏡</span></b></h1>
<p>
貢獻者:Stas Fainer
貢獻者:Stas Fainer, Yi-Ting Tu
</p>
<div class="description">
<p>馬克士威魚眼透鏡(Maxwell fisheye lens)是一個球形介電材料,折射率為 \(n(\rho) = \frac{n_0}{1+(\frac{\rho}{R})^2} \),其中 \(n_0=2\) 是其球心的折射率,\(R=100\) 是球的半徑,\(\rho\) 是與球心的距離。</p><p>上方的介電材料為由 \(N=20\) 個同心球組成的馬克士威魚眼透鏡,半徑 \(R_i=5(N+1-i)\),折射率 \(n_i = \frac{n_0}{1+(\frac{R_i}{R})^2} \),其中 \(i=1,...,N\)。然而,由於此模擬器會將互相重疊的光學元件的折射率相乘,所以第 \(i\) 個同心球形鏡的數值折射率為 \(n_{i}^\text{numerical}=\frac{n_i}{n_{i-1}}\)。</p><p>下方的介電材料是折射率為\(n(r)\)的漸變折射率材料。</p>
Expand Down

0 comments on commit 5ecf8b4

Please sign in to comment.