This repository contains course materials from the
“Evaluating machine learning and artificial intelligence algorithms”
Data Train Course
2023.
https://maxwestphal.github.io/evaluation_in_ml_datatrain_2023/
Author: Max Westphal ([email protected])
Course instructors:
- Max Westphal
- Werner Brannath
- Pascal Rink
To prepare for the course,
- install R + Rstudio from https://posit.co/download/rstudio-desktop/,
- clone this repository:
git clone https://github.com/maxwestphal/evaluation_in_ml_datatrain_2023.git
[terminal] (in desired parent directory), - open the project “evaluation_in_ml_datatrain_2023.Rproj” in RStudio,
- install renv:
install.packages(c("yaml", "renv"), dependencies = TRUE)
[R], - activate renv:
renv::activate()
[R], - install packages
renv::install()
[R] (confirm if asked to), - restore dependencies:
renv::restore()
[R] (confirm if asked to).
This work is released under a CC BY-SA 4.0 license.
If you find an error or have suggestions for improvements, please create a new issue here:
https://github.com/maxwestphal/evaluation_in_ml_datatrain_2023/issues
If you are interested in reproducing the course materials (i.e. train prediction models and produce the evaluation data), please conduct the following steps:
- re-produce pre-computed results:
source("scripts/_run.R)
[R] - render the file “slides.qmd”:
quarto::quarto_render()
[R]
str(R.Version())
## List of 15
## $ platform : chr "x86_64-w64-mingw32"
## $ arch : chr "x86_64"
## $ os : chr "mingw32"
## $ crt : chr "ucrt"
## $ system : chr "x86_64, mingw32"
## $ status : chr ""
## $ major : chr "4"
## $ minor : chr "3.1"
## $ year : chr "2023"
## $ month : chr "06"
## $ day : chr "16"
## $ svn rev : chr "84548"
## $ language : chr "R"
## $ version.string: chr "R version 4.3.1 (2023-06-16 ucrt)"
## $ nickname : chr "Beagle Scouts"