Skip to content

Commit

Permalink
Initial support for Hailo devices
Browse files Browse the repository at this point in the history
Add some examples using hefs from /usr/share/hailo-models.

Improve handling of networks with multiple outputs so that they can be
used with or without batching. The pose network post-processing is
updated slightly to cope with these changes.

Signed-off-by: David Plowman <[email protected]>
  • Loading branch information
davidplowman committed Aug 28, 2024
1 parent 1d22cf9 commit d210399
Show file tree
Hide file tree
Showing 8 changed files with 727 additions and 0 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -51,3 +51,4 @@ docs/_build/
.idea
/.spyproject
.spyproject
hailort.log
80 changes: 80 additions & 0 deletions examples/hailo/coco.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
81 changes: 81 additions & 0 deletions examples/hailo/detect.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
#!/usr/bin/env python3

"""Example module for Hailo Detection."""

import argparse

import cv2

from picamera2 import MappedArray, Picamera2, Preview
from picamera2.devices import Hailo


def extract_detections(hailo_output, w, h, class_names, threshold=0.5):
"""Extract detections from the HailoRT-postprocess output."""
results = []
for class_id, detections in enumerate(hailo_output):
for detection in detections:
score = detection[4]
if score >= threshold:
y0, x0, y1, x1 = detection[:4]
bbox = (int(x0 * w), int(y0 * h), int(x1 * w), int(y1 * h))
results.append([class_names[class_id], bbox, score])
return results


def draw_objects(request):
current_detections = detections
if current_detections:
with MappedArray(request, "main") as m:
for class_name, bbox, score in current_detections:
x0, y0, x1, y1 = bbox
label = f"{class_name} %{int(score * 100)}"
cv2.rectangle(m.array, (x0, y0), (x1, y1), (0, 255, 0, 0), 2)
cv2.putText(m.array, label, (x0 + 5, y0 + 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0, 0), 1, cv2.LINE_AA)


if __name__ == "__main__":
# Parse command-line arguments.
parser = argparse.ArgumentParser(description="Detection Example")
parser.add_argument("-m", "--model", help="Path for the HEF model.",
default="/usr/share/hailo-models/yolov8s_h8l.hef")
parser.add_argument("-l", "--labels", default="coco.txt",
help="Path to a text file containing labels.")
parser.add_argument("-s", "--score_thresh", type=float, default=0.5,
help="Score threshold, must be a float between 0 and 1.")
args = parser.parse_args()

# Get the Hailo model, the input size it wants, and the size of our preview stream.
with Hailo(args.model) as hailo:
model_h, model_w, _ = hailo.get_input_shape()
video_w, video_h = 1280, 960

# Load class names from the labels file
with open(args.labels, 'r', encoding="utf-8") as f:
class_names = f.read().splitlines()

# The list of detected objects to draw.
detections = None

# Configure and start Picamera2.
with Picamera2() as picam2:
main = {'size': (video_w, video_h), 'format': 'XRGB8888'}
lores = {'size': (model_w, model_h), 'format': 'RGB888'}
controls = {'FrameRate': 30, 'LensPosition': 4}
config = picam2.create_preview_configuration(main, lores=lores, controls=controls)
picam2.configure(config)

picam2.start_preview(Preview.QTGL, x=0, y=0, width=video_w, height=video_h)
picam2.start()
picam2.pre_callback = draw_objects

# Process each low resolution camera frame.
while True:
frame = picam2.capture_array('lores')

# Run inference on the preprocessed frame
results = hailo.run(frame)

# Extract detections from the inference results
detections = extract_detections(results[0], video_w, video_h, class_names, args.score_thresh)
91 changes: 91 additions & 0 deletions examples/hailo/pose.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
#!/usr/bin/env python3

import argparse

import cv2
from pose_utils import postproc_yolov8_pose

from picamera2 import MappedArray, Picamera2, Preview
from picamera2.devices import Hailo

parser = argparse.ArgumentParser(description='Pose estimation using Hailo')
parser.add_argument('-m', '--model', help="HEF file path", default="/usr/share/hailo-models/yolov8s_pose_h8l_pi.hef")
args = parser.parse_args()

NOSE, L_EYE, R_EYE, L_EAR, R_EAR, L_SHOULDER, R_SHOULDER, L_ELBOW, R_ELBOW, \
L_WRIST, R_WRIST, L_HIP, R_HIP, L_KNEE, R_KNEE, L_ANKLE, R_ANKLE = range(17)

JOINT_PAIRS = [[NOSE, L_EYE], [L_EYE, L_EAR], [NOSE, R_EYE], [R_EYE, R_EAR],
[L_SHOULDER, R_SHOULDER],
[L_SHOULDER, L_ELBOW], [L_ELBOW, L_WRIST], [R_SHOULDER, R_ELBOW], [R_ELBOW, R_WRIST],
[L_SHOULDER, L_HIP], [R_SHOULDER, R_HIP], [L_HIP, R_HIP],
[L_HIP, L_KNEE], [R_HIP, R_KNEE], [L_KNEE, L_ANKLE], [R_KNEE, R_ANKLE]]


def visualize_pose_estimation_result(results, image, model_size, detection_threshold=0.5, joint_threshold=0.5):
image_size = (image.shape[1], image.shape[0])

def scale_coord(coord):
return tuple([int(c * t / f) for c, f, t in zip(coord, model_size, image_size)])

bboxes, scores, keypoints, joint_scores = (
results['bboxes'], results['scores'], results['keypoints'], results['joint_scores'])
box, score, keypoint, keypoint_score = bboxes[0], scores[0], keypoints[0], joint_scores[0]

for detection_box, detection_score, detection_keypoints, detection_keypoints_score in (
zip(box, score, keypoint, keypoint_score)):
if detection_score < detection_threshold:
continue

coord_min = scale_coord(detection_box[:2])
coord_max = scale_coord(detection_box[2:])
cv2.rectangle(image, coord_min, coord_max, (255, 0, 0), 1)
cv2.putText(image, str(detection_score), coord_min, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (36, 255, 12), 1)

joint_visible = detection_keypoints_score > joint_threshold

detection_keypoints = detection_keypoints.reshape(17, 2)
for joint, joint_score in zip(detection_keypoints, detection_keypoints_score):
if joint_score > joint_threshold:
cv2.circle(image, scale_coord(joint), 4, (255, 0, 255), -1)

for joint0, joint1 in JOINT_PAIRS:
if joint_visible[joint0] and joint_visible[joint1]:
cv2.line(image, scale_coord(detection_keypoints[joint0]),
scale_coord(detection_keypoints[joint1]), (255, 0, 255), 3)


def draw_predictions(request):
with MappedArray(request, 'main') as m:
predictions = last_predictions
if predictions:
visualize_pose_estimation_result(predictions, m.array, model_size)


# ---------------- Start of the example --------------------- #

last_predictions = None

with Hailo(args.model) as hailo:
main_size = (1024, 768)
model_h, model_w, _ = hailo.get_input_shape()
model_size = lores_size = (model_w, model_h)

with Picamera2() as picam2:
main = {'size': main_size, 'format': 'XRGB8888'}
lores = {'size': lores_size, 'format': 'RGB888'}
config = picam2.create_video_configuration(main, lores=lores)
picam2.configure(config)

picam2.start_preview(Preview.QTGL, x=0, y=0, width=main_size[0], height=main_size[1])
picam2.start()
picam2.pre_callback = draw_predictions

while True:
frame = picam2.capture_array('lores')

# Do pose estimation.
raw_detections = hailo.run(frame)

# Tidy up the predictions. num_of_classes is always 1 (?).
last_predictions = postproc_yolov8_pose(1, raw_detections, model_size)
Loading

0 comments on commit d210399

Please sign in to comment.