forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Create dataset loader for ViHealthQA SEACrowd#306 * add class docstring * Update vihealthqa.py
- Loading branch information
Showing
2 changed files
with
157 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
# coding=utf-8 | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
import pandas as pd | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@InProceedings{nguyen2022viheathqa, | ||
author="Nguyen, Nhung Thi-Hong | ||
and Ha, Phuong Phan-Dieu | ||
and Nguyen, Luan Thanh | ||
and Van Nguyen, Kiet | ||
and Nguyen, Ngan Luu-Thuy", | ||
title="SPBERTQA: A Two-Stage Question Answering System Based on Sentence Transformers for Medical Texts", | ||
booktitle="Knowledge Science, Engineering and Management", | ||
year="2022", | ||
publisher="Springer International Publishing", | ||
address="Cham", | ||
pages="371--382", | ||
isbn="978-3-031-10986-7" | ||
} | ||
""" | ||
_DATASETNAME = "vihealthqa" | ||
_DESCRIPTION = """\ | ||
Vietnamese Visual Question Answering (ViVQA) consist of 10328 images and 15000 question-answer | ||
pairs in Vietnamese for evaluating Vietnamese VQA models. This dataset is built based on 10328 randomly | ||
selected images from MS COCO dataset. The question-answer pairs were based on the COCO-QA dataset that | ||
was automatically translated from English to Vietnamese. | ||
""" | ||
_HOMEPAGE = "https://huggingface.co/datasets/tarudesu/ViHealthQA" | ||
_LANGUAGES = ["vie"] | ||
_LICENSE = Licenses.UNKNOWN.value | ||
_PAPER_URL = "https://link.springer.com/chapter/10.1007/978-3-031-10986-7_30" | ||
_LOCAL = False | ||
_URLS = { | ||
"vihealthqa": { | ||
"train": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/train.csv", | ||
"val": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/val.csv", | ||
"test": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/test.csv", | ||
} | ||
} | ||
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] | ||
_SOURCE_VERSION = "1.0.0" | ||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class ViHealthQADataset(datasets.GeneratorBasedBuilder): | ||
''' | ||
This is a SeaCrowed dataloader for dataset Vietnamese Visual Question Answering (ViVQA), which consists of 10328 images and 15000 question-answer | ||
pairs in Vietnamese for evaluating Vietnamese VQA models. | ||
''' | ||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=f"{_DATASETNAME}", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_qa", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema="seacrowd_qa", | ||
subset_id=f"{_DATASETNAME}", | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
|
||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value("string"), | ||
"question": datasets.Value("string"), | ||
"answer": datasets.Value("string"), | ||
"link": datasets.Value("string") | ||
} | ||
) | ||
elif self.config.schema == "seacrowd_qa": | ||
features = schemas.qa_features | ||
features["meta"] = {"link": datasets.Value("string")} | ||
else: | ||
raise ValueError(f"No schema matched for {self.config.schema}") | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
urls = _URLS["vihealthqa"] | ||
data_dir = dl_manager.download_and_extract(urls) | ||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepath": data_dir["train"], | ||
"split": "train", | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.VALIDATION, | ||
gen_kwargs={ | ||
"filepath": data_dir["val"], | ||
"split": "val", | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={ | ||
"filepath": data_dir["test"], | ||
"split": "test", | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
|
||
raw_examples = pd.read_csv(filepath) | ||
|
||
for eid, exam in raw_examples.iterrows(): | ||
assert len(exam) == 4 | ||
exam_id, exam_quest, exam_answer, exam_link = exam | ||
|
||
if self.config.schema == "source": | ||
yield eid, {"id": str(exam_id), "question": exam_quest, "answer": exam_answer, "link": exam_link} | ||
|
||
elif self.config.schema == "seacrowd_qa": | ||
yield eid, { | ||
"id": str(eid), | ||
"question_id": exam_id, | ||
"document_id": str(eid), | ||
"question": exam_quest, | ||
"type": None, | ||
"choices": [], | ||
"context": exam_link, | ||
"answer": [exam_answer], | ||
"meta": { | ||
"link": exam_link, | ||
}, | ||
} |