Skip to content

Commit

Permalink
USPTO (#71)
Browse files Browse the repository at this point in the history
* Add data processing and conversion scripts

* Add process_uspto.sh script for processing USPTO data

* Add TypeScript compilation step

* replace bs4 with lxml. Also using polars for the main computation.

* Add row limit for testing.

* add multiprocessing to speed things up

* split runtime script into setup and run

* remove streaming. slower but will need alot more memory

* fix typehint: Sequence defines `__len__`

* add args to bash script

* add readme

* use pandoc
  • Loading branch information
baberabb authored Jun 11, 2024
1 parent 1ef9a1c commit 6899846
Show file tree
Hide file tree
Showing 9 changed files with 428 additions and 3 deletions.
2 changes: 1 addition & 1 deletion courtlistener/get_data.sh
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ download_dir="./data/courtlistener/raw"
mkdir -p "$download_dir"

# Only download the data from most recent CL dump
# The newest dump contains the previous dumps data
# The newest dump contains the previous dumps data
# Differences from the previous data should not be included
dates=(
"2024-05-06"
Expand Down
4 changes: 2 additions & 2 deletions licensed_pile/write.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
import os
from contextlib import ExitStack
from queue import Queue
from typing import Dict, Sequence
from typing import Dict, Iterator

import smart_open
import tqdm
Expand All @@ -23,7 +23,7 @@ def shard_name(filename: str, shard: str, padding: int = 5):

# TODO: Add overwrite protection
def to_dolma(
examples: Sequence[Dict],
examples: Iterator[Dict],
path: str,
filename: str,
shard_size: int = 1,
Expand Down
47 changes: 47 additions & 0 deletions uspto/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# USPTP

USPTO dataset extracted from [Google Patents Public Dataset](https://cloud.google.com/blog/topics/public-datasets/google-patents-public-datasets-connecting-public-paid-and-private-patent-data) and uploaded to HF.

## Data Download and Processing

To clone the unprocessed dataset from HuggingFace run `bash setup.sh`. The default location is `/uspto/data`

`pandoc` is required to run the script. The command to install it is provided in the script (commented out). Alternatively you can install it with`sudo apt-get install pandoc` but that installs an older version.


The main script can be run with `bash run process_uspto.sh --output-dir <output_dir> --max-concurrency <int> --limit <max_rows>`.

Note: The script will take a long time to run. The `--max-concurrency` flag can be used to speed up the process. The `--limit` flag can be used to limit the number of rows processed.
It takes ~30 mins to process 1 file with 256 threads. The bulk of the processing is done by pandoc.

To save the processed data to parquet add the `--to-parquet` flag.

<details>
<summary>Under the hood of process_uspto.sh</summary>

### setup.sh has 3 main steps:

#### Usage
1. Ensure you are in the correct directory structure:
1. The script expects to be run from the parent directory of the `uspto` directory.

#### Running the Script:
- Make sure the script has execute permissions. If not, run:
```sh
chmod +x process_uspto.sh
```

#### It has the following steps:
1. The main bulk of the processing in the python script are the pandoc conversions. A progress bar is displayed for each column/file.

</details>


## Data Stats


## Example
Some output examples are in the examples dir.

## License
Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/
110 changes: 110 additions & 0 deletions uspto/examples/uspto_examples.jsonl

Large diffs are not rendered by default.

8 changes: 8 additions & 0 deletions uspto/process_uspto.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
#!/bin/bash

#!/bin/bash

# Run the Python script
echo "Running the uspto-to-dolma.py script..."
python uspto-to-dolma.py "$@"
echo "uspto-to-dolma.py script completed."
3 changes: 3 additions & 0 deletions uspto/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
polars
pypandoc
rich
9 changes: 9 additions & 0 deletions uspto/setup.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
#!/bin/bash

# Download HF Dataset repo
git clone [email protected]:datasets/baber/USPTO uspto/data
echo "HF Dataset repo cloned to uspto/data"

# install pandoc
#wget https://github.com/jgm/pandoc/releases/download/3.2/pandoc-3.2-1-amd64.deb
#sudo dpkg -i pandoc-3.2-1-amd64.deb
206 changes: 206 additions & 0 deletions uspto/uspto-to-dolma.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,206 @@
import argparse
import os
import sys
from functools import partial
from pathlib import Path
from typing import Iterator

import polars as pl
from polars import col
from tqdm import tqdm
from utils import parallel_apply

from licensed_pile.licenses import PermissiveLicenses
from licensed_pile.logs import configure_logging
from licensed_pile.write import to_dolma

logger = configure_logging("uspto")

if sys.version_info < (3, 9):
raise RuntimeError("Python version >= 3.9 required")


def process_datasets(
data_dir: str = r"data/uspto/",
limit: int = 0,
max_concurrency: int = 4,
) -> Iterator[dict]:
"""
This function `run_dataset` scans a dataset located in a directory, converts each file in the dataset to a desired
format using pandoc,and returns an iterable of dictionaries containing the converted data.
Parameters:
- `data_dir` (str): The directory where the dataset is located. Default value is "./data/uspto/".
- `limit` (int): The maximum number of rows to convert. Default value is 0, which means convert all rows from all files in the dataset.
- `max_concurrency` (int): The maximum number of concurrent conversions to perform. Default value is 2.
Returns:
- `Iterable[dict]`: An iterable of dictionaries containing the converted data from each file in the dataset.
Note:
- The `data_dir` parameter should be a valid directory path ending with a forward slash '/'.
- The `limit` parameter determines how many row to read. Set it to 0 to convert all files.
- The `max_concurrency` parameter determines how many parquet files to process concurrently.
Example usage:
```python
for data in run_dataset(data_dir=r"./data/uspto/", limit=10, max_concurrency=2):
# Process each converted data entry
print(data)
```
"""
data_path = Path(data_dir)
logger.info(f"Processing files in {data_path}")
file_names = list(data_path.glob("*.parquet"))
for i, file_name in enumerate(file_names):
for x in scan_dataset(file_name, limit, max_concurrency).iter_rows(named=True):
yield x


def to_parquet(
output_dir: str, data_dir: str, limit: int, max_concurrency: int
) -> None:
output_dir = Path(output_dir)
datapath = Path(data_dir)
logger.info(
f'Processing {len(list(datapath.glob("*.parquet")))} files in {datapath}'
)
for i, files in enumerate(tqdm(datapath.glob("*.parquet"))):
file_path = output_dir.joinpath(f"uspto{i}.parquet")
scan_dataset(files, limit, max_concurrency).write_parquet(file_path)


def scan_dataset(file_name, limit, max_concurrency) -> pl.DataFrame:
"""
Scans an individual parquet file and returns a processed DataFrame.
Returns:
DataFrame: A processed DataFrame containing the selected columns from the dataset.
Example Usage:
file_name = "dataset.parquet"
limit = 100
max_concurrency = 4
result = scan_dataset((file_name, limit, max_concurrency))
"""
parallel_apply_desc = partial(parallel_apply, False, max_concurrency)
parallel_apply_claims = partial(parallel_apply, True, max_concurrency)
columns = (
"title_text",
"title_language",
"abstract_text",
"description_html",
"claims_html",
"publication_date",
"application_number",
"filing_date",
)

df: pl.LazyFrame = (
pl.scan_parquet(file_name)
.select(columns)
.filter(
~pl.all_horizontal(
pl.col(["abstract_text", "description_html", "claims_html"]).is_null()
)
)
# we use app no. for the id and filing date for the date created
.rename({"application_number": "id", "filing_date": "created"})
.with_columns(
# the data was scrapped approx at this date
pl.lit("2024-03-22", dtype=pl.String).alias("added"),
col("created").cast(pl.String, strict=False),
col("publication_date").cast(pl.String, strict=False),
pl.concat_str(
pl.lit(r"ABSTRACT", dtype=pl.String),
pl.lit("\n\n", dtype=pl.String),
col("abstract_text"),
ignore_nulls=False,
).alias("abstract_text"),
)
.with_columns_seq(
col("description_html").map_batches(
parallel_apply_desc,
return_dtype=pl.String,
),
col("claims_html").map_batches(
parallel_apply_claims,
return_dtype=pl.String,
),
)
.with_columns(
pl.concat_str(
col("title_text"),
pl.lit("\n\n", dtype=pl.String),
col("abstract_text"),
pl.lit("\n\n", dtype=pl.String),
col("description_html"),
pl.lit("\n\n", dtype=pl.String),
col("claims_html"),
ignore_nulls=True,
).alias("text"),
pl.struct(
pl.lit(str(PermissiveLicenses.CC_BY), dtype=pl.String).alias("license"),
col("title_language").alias("language"),
col("publication_date").alias("publication_date"),
).alias("metadata"),
pl.lit("Google Patents Public Data").alias("source"),
)
).select(["id", "text", "added", "created", "source", "metadata"])
if limit > 0:
df = df.fetch(limit).lazy()
return df.collect()


def create_args_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument(
"--output-path", type=str, help="Output directory", default=r"uspto/outputs"
)
parser.add_argument(
"--data-path",
type=str,
default=r"uspto/data",
help="Dataset directory where all parquet files to process are located ",
)

parser.add_argument(
"--limit",
type=int,
default=0,
help="Limit the number of rows to read for testing",
)
parser.add_argument(
"--max-concurrency",
type=int,
default=int(os.cpu_count()) - 1,
help="Maximum number of multiprocessing for pandoc conversions",
)
parser.add_argument(
"--to-parquet",
action="store_true",
help="Output to parquet file",
)

return parser


if __name__ == "__main__":
args = create_args_parser().parse_args()
logger.info(
f"""Processing USPTO with the following parameters: Output Dir: {args.output_path}, Data Dir: {args.data_path},
Limit: {args.limit}, Max Concurrency: {args.max_concurrency}"""
)
if args.to_parquet:
to_parquet(args.output_path, args.data_path, args.limit, args.max_concurrency)
else:
to_dolma(
process_datasets(
data_dir=args.data_path,
limit=args.limit,
max_concurrency=args.max_concurrency,
),
args.output_path,
"uspto.jsonl.gz",
)
42 changes: 42 additions & 0 deletions uspto/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
import multiprocessing
import re
from functools import partial
from itertools import islice

import polars as pl
import pypandoc
from rich.progress import track


def batched(iterable, n):
it = iter(iterable)
while batch := tuple(islice(it, n)):
yield batch


def parse_html(claims: bool, html_string: str) -> str:
if not html_string:
return ""
text = pypandoc.convert_text(html_string, "plain", "html", extra_args=["--quiet"])
# remove single newlines that are not surrounded by other newlines as those are likely line length formatting.
new_line_pattern = r"(?<!\n)\n(?!\n)"
# also add line-breaks after <number><periods> for claims (as they are all numbered).
list_pattern = r"(\s\d+\.\s)"
text = re.sub(new_line_pattern, " ", text)
if claims:
text = re.sub(list_pattern, r"\n\1", text)
return text


# from: https://stackoverflow.com/a/74749075/19355181
def parallel_apply(claims: bool, max_concurrency: int, column: pl.Series) -> pl.Series:
if claims:
fn = partial(parse_html, True)
else:
fn = partial(parse_html, False)
if max_concurrency == 0:
max_concurrency = None
# polars mainly handles the concurrency but the pandoc calls add as a blocker. This is a workaround to
# increase the concurrency of the pandoc calls.
with multiprocessing.get_context("spawn").Pool(max_concurrency) as pool:
return pl.Series(pool.imap(fn, track(column, description="Processing column")))

0 comments on commit 6899846

Please sign in to comment.