Skip to content

Commit

Permalink
Move Int4CPULayout to int4_cpu_layout.py (#1419)
Browse files Browse the repository at this point in the history
* Move Int4CPULayout to int4_cpu_layout.py

* Apply automatic Ruff fixes

---------

Co-authored-by: Ruff Auto-fixes <[email protected]>
  • Loading branch information
yanbing-j and RUFF-bot authored Dec 16, 2024
1 parent 603d908 commit 9472a17
Show file tree
Hide file tree
Showing 3 changed files with 266 additions and 249 deletions.
4 changes: 3 additions & 1 deletion torchao/dtypes/uintx/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,9 @@
from .block_sparse_layout import (
BlockSparseLayout,
)
from .int4_cpu_layout import (
Int4CPULayout,
)
from .marlin_qqq_tensor import (
MarlinQQQLayout,
MarlinQQQTensor,
Expand All @@ -13,7 +16,6 @@
SemiSparseLayout,
)
from .tensor_core_tiled_layout import (
Int4CPULayout,
TensorCoreTiledLayout,
)
from .uintx_layout import (
Expand Down
263 changes: 263 additions & 0 deletions torchao/dtypes/uintx/int4_cpu_layout.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,263 @@
from dataclasses import dataclass
from typing import Optional, Tuple

import torch
from torch.utils._python_dispatch import return_and_correct_aliasing

from torchao.dtypes.affine_quantized_tensor import register_layout
from torchao.dtypes.utils import AQTTensorImpl, Layout, is_device
from torchao.utils import (
TORCH_VERSION_AT_LEAST_2_5,
TORCH_VERSION_AT_LEAST_2_6,
fill_defaults,
)

aten = torch.ops.aten


@dataclass(frozen=True)
class Int4CPULayout(Layout):
"""Only for PyTorch version at least 2.6"""

pass


@register_layout(Int4CPULayout)
class Int4CPUAQTTensorImpl(AQTTensorImpl):
"""
TensorImpl for int4 CPU layout for affine quantized tensor, this is for int4 only,
used by tinygemm kernels `_weight_int4pack_mm_for_cpu`
It stores the original tensor of dimension [n][k] (int32 dtype) as packed weight of 2-d tensor of
dimension: [n][k / 2] (uint8 dtype)
(unpacked Tensor shape is n * k)
Note: we also pack scale and zero point together here for tinygemm kernel
Note: technically Int4 CPU layout should be the layout for the underlying packed weight
(int Tensor) but since the scale and zero_point are also packed into the same tensor here which is not used
in plain layout, we just created a layout for AQT right now, this could be improved if we split out
int4 aqt into a separate tensor subclass
fields:
packed_weight (torch.Tensor): the 2-d packed tensor in a Int4 CPU layout
scale_and_zero (torch.Tensor): the combined scale Tensor used to map between floating point tensor to quantized tensor and zero_point Tensor
"""

def __new__(
cls,
packed_weight: torch.Tensor,
scale_and_zero: torch.Tensor,
transposed: bool,
_layout: Layout,
):
kwargs = {}
kwargs["device"] = packed_weight.device
kwargs["layout"] = (
kwargs.get("layout")
if kwargs.get("layout", False)
else packed_weight.layout
)
kwargs["dtype"] = packed_weight.dtype
kwargs["requires_grad"] = False
shape = packed_weight.shape
return torch.Tensor._make_wrapper_subclass(cls, shape, **kwargs) # type: ignore[attr-defined]

def __init__(
self,
packed_weight: torch.Tensor,
scale_and_zero: torch.Tensor,
transposed: bool,
_layout: Layout,
):
self.packed_weight = packed_weight
self.scale_and_zero = scale_and_zero
self.transposed = False
self._layout = _layout

def __tensor_flatten__(self):
return ["packed_weight", "scale_and_zero"], [self.transposed, self._layout]

@classmethod
def __tensor_unflatten__(
cls, tensor_data_dict, tensor_attributes, outer_size, outer_stride
):
packed_weight, scale_and_zero = (
tensor_data_dict["packed_weight"],
tensor_data_dict["scale_and_zero"],
)
(
transposed,
_layout,
) = tensor_attributes
return cls(packed_weight, scale_and_zero, transposed, _layout)

@classmethod
def from_plain(
cls,
int_data: torch.Tensor,
scale: torch.Tensor,
zero_point: Optional[torch.Tensor],
_layout: Layout,
):
assert isinstance(_layout, Int4CPULayout)

if TORCH_VERSION_AT_LEAST_2_6:
assert (
int_data.dtype == torch.int32
), "torch.ops.aten._convert_weight_to_int4pack_for_cpu expects `int32` dtype"
packed_weight = torch.ops.aten._convert_weight_to_int4pack_for_cpu(
int_data,
1, # TODO:remove
)
elif TORCH_VERSION_AT_LEAST_2_5:
int_data = (int_data[::, ::2] << 4 | int_data[::, 1::2]).to(torch.uint8)
assert (
int_data.dtype == torch.uint8
), "torch.ops.aten._convert_weight_to_int4pack in torch 2.5 expects `uint8` dtype"
packed_weight = torch.ops.aten._convert_weight_to_int4pack(
int_data, _layout.inner_k_tiles
)
else:
assert (
int_data.dtype == torch.int32
), "torch.ops.aten._convert_weight_to_int4pack in torch 2.4 expects `int32` dtype"
packed_weight = torch.ops.aten._convert_weight_to_int4pack(
int_data, _layout.inner_k_tiles
)

scale = scale.reshape(int_data.shape[0], -1)
zero_point = zero_point.reshape(int_data.shape[0], -1)
from torchao.quantization.utils import pack_tinygemm_scales_and_zeros

scale_and_zero = pack_tinygemm_scales_and_zeros(scale, zero_point)
return cls(packed_weight, scale_and_zero, False, _layout)

def to(self, *args, **kwargs):
kwargs = self._get_to_kwargs(*args, **kwargs)
device = kwargs["device"]
if not is_device(torch.device(self.device).type, device):
raise ValueError(
f"Int4CPUAQTTensorImpl does not support conversion from {self.device} to {device}"
)
return self.__class__(
self.packed_weight.to(device),
self.scale_and_zero.to(device),
self.transposed,
self._layout,
)

def _apply_fn_to_data(self, fn):
return self.__class__(
fn(self.packed_weight),
fn(self.scale_and_zero),
self.transposed,
self._layout,
)

@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
kwargs = {} if kwargs is None else kwargs

if func is aten.detach.default:
return return_and_correct_aliasing(
func, args, kwargs, args[0]._apply_fn_to_data(torch.detach)
)

if func is aten.clone.default:
return return_and_correct_aliasing(
func, args, kwargs, args[0]._apply_fn_to_data(torch.clone)
)

if func is aten.t.default:
"""we don't need to repack the weight and just rely on external
shape being changed and record the status of transpose/no-transpose
"""
transposed = Int4CPUAQTTensorImpl(
args[0].packed_weight,
args[0].scale_and_zero,
not args[0].transposed,
args[0]._layout,
)
return return_and_correct_aliasing(func, args, kwargs, transposed)

if func is aten.slice.Tensor:
self, dim, start, end, step = fill_defaults(args, 5, [0, None, None, 1])
if dim == 0:
int_data, scale, zero_point = self.get_plain()
int_data = aten.slice.Tensor(int_data, dim, start, end, step)
# this is to handle padding
int_data = self._layout.post_process(int_data)
sliced = self.from_plain(int_data, scale, zero_point, self._layout)
return return_and_correct_aliasing(func, args, kwargs, sliced)
elif dim == 1:
int_data, scale, zero_point = self.get_plain()
assert step == 1, "Only step == 1 is supported in slicing right now"
data_len = int_data.shape[dim]
scale_len = scale.shape[dim]
ratio = data_len / scale_len
start_scale = int(start / ratio)
end_scale = int(end / ratio)

int_data = aten.slice.Tensor(int_data, dim, start, end, step)
# this is to handle padding
int_data = self._layout.post_process(int_data)
scale = aten.slice.Tensor(scale, dim, start_scale, end_scale, step)
zero_point = aten.slice.Tensor(
zero_point, dim, start_scale, end_scale, step
)
sliced = self.from_plain(int_data, scale, zero_point, self._layout)
return sliced
else:
raise NotImplementedError(
f"Int4CPUAQTTensorImpl dispatch: attempting to run {func}, with dim={dim}, that is not supported"
)

raise NotImplementedError(
f"Int4CPUAQTTensorImpl dispatch: attempting to run {func}, this is not supported"
)

__torch_function__ = torch._C._disabled_torch_function_impl

def get_plain(self) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
from torchao.quantization.quant_primitives import (
ZeroPointDomain,
quantize_affine,
)
from torchao.quantization.utils import unpack_tinygemm_scales_and_zeros

scale, zero = unpack_tinygemm_scales_and_zeros(self.scale_and_zero)

cur_shape = self.shape
assert len(cur_shape) == 2
original_shape = (cur_shape[0], cur_shape[1] * 2)
eye_shape = original_shape[1]
groupsize = int(original_shape[1] / scale.shape[-2])
block_size = (1, groupsize)
device = self.device
original_dtype = torch.bfloat16
target_dtype = torch.int32
quant_min = 0
quant_max = 15
zero_point_domain = ZeroPointDomain.FLOAT
assert len(block_size) == 2 and block_size[0] == 1
dequantized = torch.ops.aten._weight_int4pack_mm_for_cpu(
torch.eye(eye_shape, device=device, dtype=original_dtype),
self.packed_weight,
groupsize,
self.scale_and_zero,
)
dequantized = dequantized.t().contiguous()
# TODO: move this to `unpack_tinygemm_scales_and_zeros`?
scale = scale.reshape(scale.shape[:-1]).contiguous()
zero = zero.reshape(zero.shape[:-1]).contiguous()
int_data = quantize_affine(
dequantized,
block_size,
scale,
zero,
target_dtype,
quant_min,
quant_max,
zero_point_domain,
)
return int_data, scale, zero

def get_layout(self) -> Layout:
return self._layout
Loading

0 comments on commit 9472a17

Please sign in to comment.