-
Notifications
You must be signed in to change notification settings - Fork 188
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
metal lowbit kernels: optimized 2-bit, 3-bit and 4-bit shaders (#1422)
- Loading branch information
1 parent
f52d3ab
commit 2e032c6
Showing
17 changed files
with
599 additions
and
188 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
template <typename T> struct Vec4Type {}; | ||
|
||
template <> struct Vec4Type<float> { | ||
using type = float4; | ||
}; | ||
|
||
template <> struct Vec4Type<half> { | ||
using type = half4; | ||
}; | ||
|
||
#if __METAL_VERSION__ >= 310 | ||
template <> struct Vec4Type<bfloat> { | ||
using type = bfloat4; | ||
}; | ||
#endif |
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
138 changes: 138 additions & 0 deletions
138
torchao/experimental/kernels/mps/metal/int2mm_opt.metal
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
#include <metal_simdgroup> | ||
#include <metal_stdlib> | ||
using namespace metal; | ||
|
||
/* | ||
This code takes heavy inspiration from MLX: | ||
https://github.com/ml-explore/mlx/blob/main/mlx/backend/metal/kernels/quantized.h | ||
Specifically: | ||
- Multiplying activation by inverse scaling factor to reduce compute | ||
boundedness | ||
- Handling zero point by accumulating act in separate sum term. Needed with | ||
optimization done above. MLX MIT License: | ||
https://github.com/ml-explore/mlx/blob/main/LICENSE | ||
*/ | ||
|
||
/* | ||
@brief This shader implements 2-bit matrix-vector multiplication where A | ||
matrix is fp16, bfloat or float and B matrix is a 2-bit groupwise-quantized weight | ||
matrix. | ||
@param [in] A is activation matrix of size M x K. | ||
@param [in] B is weight matrix of size M x K. Each byte contains 4 2-bit | ||
values, along K dim, packed together. | ||
@param [in] scales_ptr is scales ptr corresponding each | ||
output channel x groups. These are packed as [num_groups = ceil(K / group_size), N]. N = output | ||
channels. | ||
@param [in] zeros_ptr is zero points corresponding each | ||
output channel x groups. These are packed as [num_groups = ceil(K / group_size), N]. N = output | ||
channels. | ||
output channel x groups. These are packed as [num_groups = ceil(K / group_size), N, 2]. N = output | ||
@param [out] output_data is output matrix of size M x N. | ||
@param [in] sizes array contains values of M, K and N. | ||
@param [in] thread_index is global thread id. | ||
@param [in] tid_in_simdgruop is thread id in simdgroup. e.g. in simdgroup of size 32 it can be in [0-31]. | ||
*/ | ||
template <typename T, unsigned group_size> | ||
kernel void int2pack_mm(constant T *A [[buffer(0)]], | ||
constant uchar *B [[buffer(1)]], | ||
constant T *scales_ptr [[buffer(2)]], | ||
constant T *zeros_ptr [[buffer(3)]], | ||
device T *output_data [[buffer(4)]], | ||
constant uint3 &sizes [[buffer(5)]], // M, K, N | ||
uint3 thread_index [[thread_position_in_grid]], | ||
uint tid_in_simdgroup [[thread_index_in_simdgroup]]) { | ||
constexpr uint threads_per_channel = 32; | ||
constexpr uint ks_per_thread = 4; | ||
constexpr uint k_pack_factor = 4; | ||
const uint K = sizes.y; | ||
const uint N = sizes.z; | ||
uint n = thread_index.x; // 0..N/4-1 | ||
uint m = thread_index.z; // 0..M | ||
n = n / threads_per_channel; | ||
n = n * 4; | ||
// This is starting k for each thread. In the example above, for thread 1 this | ||
// value will be 4. | ||
uint k = (tid_in_simdgroup % threads_per_channel) * ks_per_thread; | ||
constexpr int k_jump = threads_per_channel * ks_per_thread; | ||
|
||
using vecT = typename Vec4Type<T>::type; | ||
constant vecT *A_ptr = reinterpret_cast<constant vecT *>(A + m * K); | ||
constant uchar *B_ptr = B + ((n * K) / k_pack_factor); | ||
|
||
thread float4 result = float4(0.0); | ||
// We multipy group of 4 channels with these scales. | ||
// Because corresponding values from weight matrix are effectively left | ||
// shifted. This is to avoid doing right shift on those values which ends up | ||
// affecting performance. This is the trick applied in MLX kernels. | ||
float4 act_div_scales = {1.f, 1 / 4.f, 1 / 16.f, 1 / 64.f}; | ||
|
||
for (; k < K; k += k_jump) { | ||
// Find specific group to which channels handled by this thread | ||
// belong. | ||
uint k_block_index = k / group_size; | ||
uint scales_group_offset = (k_block_index * N + n); | ||
|
||
vecT scales = | ||
(reinterpret_cast<constant vecT *>(scales_ptr + scales_group_offset))[0]; | ||
// Adding zero point results in 10% perf penalty. | ||
vecT zeros = | ||
(reinterpret_cast<constant vecT *>(zeros_ptr + scales_group_offset))[0]; | ||
float4 zeros_float = float4(zeros); | ||
|
||
float4 a_val = float4(A_ptr[k / 4]); | ||
// We are gonna skip right-shifts of the weights and hence divide by corresponding factor. | ||
float4 a_vec = a_val * act_div_scales; | ||
float a_val_sum = a_val[0] + a_val[1] + a_val[2] + a_val[3]; | ||
|
||
float4x4 b_mat; | ||
ushort b_val0 = (B_ptr + (k + 0 * K) / k_pack_factor)[0]; | ||
ushort b_val1 = (B_ptr + (k + 1 * K) / k_pack_factor)[0]; | ||
ushort b_val2 = (B_ptr + (k + 2 * K) / k_pack_factor)[0]; | ||
ushort b_val3 = (B_ptr + (k + 3 * K) / k_pack_factor)[0]; | ||
b_mat[0] = scales[0] * float4(float(b_val0 & 0x03), float(b_val0 & 0x0c), | ||
float(b_val0 & 0x30), float(b_val0 & 0xc0)); | ||
b_mat[1] = scales[1] * float4(float(b_val1 & 0x03), float(b_val1 & 0x0c), | ||
float(b_val1 & 0x30), float(b_val1 & 0xc0)); | ||
b_mat[2] = scales[2] * float4(float(b_val2 & 0x03), float(b_val2 & 0x0c), | ||
float(b_val2 & 0x30), float(b_val2 & 0xc0)); | ||
b_mat[3] = scales[3] * float4(float(b_val3 & 0x03), float(b_val3 & 0x0c), | ||
float(b_val3 & 0x30), float(b_val3 & 0xc0)); | ||
|
||
result += a_vec * b_mat; | ||
result += a_val_sum * zeros_float; | ||
} | ||
result += simd_shuffle_down(result, 1); | ||
result += simd_shuffle_down(result, 2); | ||
result += simd_shuffle_down(result, 4); | ||
result += simd_shuffle_down(result, 8); | ||
result += simd_shuffle_down(result, 16); | ||
if (tid_in_simdgroup % threads_per_channel == 0) { | ||
reinterpret_cast<device vecT *>(output_data + m * N)[n / 4] = vecT(result); | ||
} | ||
} | ||
|
||
#define INSTANTIATE_INT2MM(DTYPE, GSIZE) \ | ||
template [[host_name("int2pack_mm_" #GSIZE "_" #DTYPE)]] kernel void \ | ||
int2pack_mm<DTYPE, GSIZE>( \ | ||
constant DTYPE * A [[buffer(0)]], constant uchar * B [[buffer(1)]], \ | ||
constant DTYPE * scales_ptr [[buffer(2)]], \ | ||
constant DTYPE * zeros_ptr [[buffer(3)]], \ | ||
device DTYPE * output_data [[buffer(4)]], \ | ||
constant uint3 & sizes [[buffer(5)]], \ | ||
uint3 thread_index [[thread_position_in_grid]], \ | ||
uint tid_in_simdgroup [[thread_index_in_simdgroup]]) | ||
|
||
INSTANTIATE_INT2MM(float, 32); | ||
INSTANTIATE_INT2MM(half, 32); | ||
INSTANTIATE_INT2MM(float, 64); | ||
INSTANTIATE_INT2MM(half, 64); | ||
INSTANTIATE_INT2MM(float, 128); | ||
INSTANTIATE_INT2MM(half, 128); | ||
INSTANTIATE_INT2MM(float, 256); | ||
INSTANTIATE_INT2MM(half, 256); | ||
#if __METAL_VERSION__ >= 310 | ||
INSTANTIATE_INT2MM(bfloat, 32); | ||
INSTANTIATE_INT2MM(bfloat, 64); | ||
INSTANTIATE_INT2MM(bfloat, 128); | ||
INSTANTIATE_INT2MM(bfloat, 256); | ||
#endif |
Oops, something went wrong.