-
Notifications
You must be signed in to change notification settings - Fork 58
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
11 changed files
with
458 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
data/data.h |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
# Copyright 2024 ETH Zurich and University of Bologna. | ||
# Licensed under the Apache License, Version 2.0, see LICENSE for details. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Luca Colagrande <[email protected]> | ||
|
||
# Usage of absolute paths is required to externally include this Makefile | ||
MK_DIR := $(dir $(realpath $(lastword $(MAKEFILE_LIST)))) | ||
DATA_DIR := $(realpath $(MK_DIR)/data) | ||
SRC_DIR := $(realpath $(MK_DIR)/src) | ||
|
||
DATA_CFG ?= $(DATA_DIR)/params.json | ||
SECTION ?= | ||
|
||
APP ?= kmeans | ||
SRCS ?= $(realpath $(SRC_DIR)/main.c) | ||
INCDIRS ?= $(DATA_DIR) $(SRC_DIR) | ||
|
||
DATAGEN_PY = $(DATA_DIR)/datagen.py | ||
DATA_H = $(DATA_DIR)/data.h | ||
|
||
$(DATA_H): $(DATAGEN_PY) $(DATA_CFG) | ||
$< -c $(DATA_CFG) --no-gui --section="$(SECTION)" > $@ | ||
|
||
.PHONY: clean-data clean | ||
|
||
clean-data: | ||
rm -f $(DATA_H) | ||
|
||
clean: clean-data |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright 2024 ETH Zurich and University of Bologna. | ||
# Licensed under the Apache License, Version 2.0, see LICENSE for details. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Authors: Luca Colagrande <[email protected]> | ||
|
||
import argparse | ||
import hjson | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import os | ||
import pathlib | ||
from sklearn.datasets import make_blobs | ||
from sklearn.cluster import KMeans | ||
import sys | ||
|
||
|
||
sys.path.append(os.path.join(os.path.dirname(__file__), "../../../../util/sim/")) | ||
from data_utils import emit_license, format_scalar_definition, \ | ||
format_vector_definition # noqa: E402 | ||
|
||
|
||
# AXI splits bursts crossing 4KB address boundaries. To minimize | ||
# the occurrence of these splits the data should be aligned to 4KB | ||
BURST_ALIGNMENT = 4096 | ||
|
||
|
||
def golden_model(samples, n_clusters, initial_centroids, max_iter): | ||
# Apply k-means clustering | ||
kmeans = KMeans( | ||
n_clusters=n_clusters, | ||
init=initial_centroids, | ||
max_iter=max_iter | ||
) | ||
kmeans.fit(samples) | ||
return kmeans.cluster_centers_, kmeans.n_iter_ | ||
|
||
|
||
def visualize_clusters(samples, centroids, title=None): | ||
plt.scatter(samples[:, 0], samples[:, 1], s=30) | ||
plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=200, linewidths=3, color='red') | ||
if not title: | ||
title = "K-means clusters" | ||
plt.title(title) | ||
plt.xlabel("Feature 1") | ||
plt.ylabel("Feature 2") | ||
plt.show() | ||
|
||
|
||
def emit_header(**kwargs): | ||
|
||
# Aliases | ||
n_samples = kwargs['n_samples'] | ||
n_features = kwargs['n_features'] | ||
n_clusters = kwargs['n_clusters'] | ||
max_iter = kwargs['max_iter'] | ||
seed = kwargs['seed'] | ||
gui = not kwargs['no_gui'] | ||
|
||
# Generate random samples | ||
X, _ = make_blobs( | ||
n_samples=n_samples, | ||
n_features=n_features, | ||
centers=n_clusters, | ||
random_state=seed | ||
) | ||
|
||
# Generate initial centroids randomly | ||
rng = np.random.default_rng(seed=seed) | ||
initial_centroids = rng.uniform(low=X.min(axis=0), high=X.max(axis=0), | ||
size=(n_clusters, n_features)) | ||
|
||
# Visualize the generated samples | ||
if gui: | ||
visualize_clusters(X, initial_centroids) | ||
|
||
# Apply k-means clustering | ||
centers, n_iter = golden_model(X, n_clusters, initial_centroids, max_iter) | ||
|
||
# Visualize the clusters | ||
if gui: | ||
visualize_clusters(X, centers) | ||
|
||
# Generate header | ||
data_str = [emit_license()] | ||
data_str += [format_scalar_definition('uint32_t', 'n_samples', n_samples)] | ||
data_str += [format_scalar_definition('uint32_t', 'n_features', n_features)] | ||
data_str += [format_scalar_definition('uint32_t', 'n_clusters', n_clusters)] | ||
data_str += [format_scalar_definition('uint32_t', 'n_iter', n_iter)] | ||
data_str += [format_vector_definition('double', 'centroids', initial_centroids.flatten(), | ||
alignment=BURST_ALIGNMENT, section=kwargs['section'])] | ||
data_str += [format_vector_definition('double', 'samples', X.flatten(), | ||
alignment=BURST_ALIGNMENT, section=kwargs['section'])] | ||
data_str = '\n\n'.join(data_str) | ||
return data_str | ||
|
||
|
||
def main(): | ||
|
||
parser = argparse.ArgumentParser(description='Generate data for kernels') | ||
parser.add_argument( | ||
"-c", "--cfg", | ||
type=pathlib.Path, | ||
required=True, | ||
help='Select param config file kernel') | ||
parser.add_argument( | ||
'--section', | ||
type=str, | ||
help='Section to store matrices in') | ||
parser.add_argument( | ||
'--no-gui', | ||
action='store_true', | ||
help='Run without visualization') | ||
args = parser.parse_args() | ||
|
||
# Load param config file | ||
with args.cfg.open() as f: | ||
param = hjson.loads(f.read()) | ||
param['section'] = args.section | ||
param['no_gui'] = args.no_gui | ||
|
||
# Emit header file | ||
print(emit_header(**param)) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
// Copyright 2024 ETH Zurich and University of Bologna. | ||
// Licensed under the Apache License, Version 2.0, see LICENSE for details. | ||
// SPDX-License-Identifier: Apache-2.0 | ||
|
||
{ | ||
n_clusters: 3, | ||
n_features: 2, | ||
n_samples: 128, | ||
max_iter: 3, | ||
seed: 42 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,192 @@ | ||
// Copyright 2024 ETH Zurich and University of Bologna. | ||
// Licensed under the Apache License, Version 2.0, see LICENSE for details. | ||
// SPDX-License-Identifier: Apache-2.0 | ||
// | ||
// Author: Luca Colagrande <[email protected]> | ||
|
||
#include <stdint.h> | ||
|
||
#include "math.h" | ||
#include "snrt.h" | ||
|
||
double euclidean_distance_squared(uint32_t n_features, double* point1, | ||
double* point2) { | ||
double sum = 0; | ||
for (uint32_t i = 0; i < n_features; i++) { | ||
double diff = point1[i] - point2[i]; | ||
sum += diff * diff; | ||
} | ||
return sum; | ||
} | ||
|
||
void kmeans(uint32_t n_samples, uint32_t n_features, uint32_t n_clusters, | ||
uint32_t n_iter, double* samples, double* centroids) { | ||
// Distribute work across clusters | ||
uint32_t n_samples_per_cluster = n_samples / snrt_cluster_num(); | ||
|
||
// Dynamically allocate space in TCDM | ||
double* local_samples = snrt_l1_alloc_cluster_local( | ||
n_samples_per_cluster * n_features * sizeof(double), sizeof(double)); | ||
double* local_centroids = snrt_l1_alloc_cluster_local( | ||
n_clusters * n_features * sizeof(double), sizeof(double)); | ||
uint32_t* membership = snrt_l1_alloc_cluster_local( | ||
n_samples_per_cluster * sizeof(uint32_t), sizeof(uint32_t)); | ||
uint32_t* partial_membership_cnt = snrt_l1_alloc_compute_core_local( | ||
n_clusters * sizeof(uint32_t), sizeof(uint32_t)); | ||
// First core's partial centroids will store final centroids | ||
double* final_centroids = snrt_l1_next(); | ||
double* partial_centroids = snrt_l1_alloc_compute_core_local( | ||
n_clusters * n_features * sizeof(double), sizeof(double)); | ||
|
||
// Transfer samples and initial centroids with DMA | ||
size_t size; | ||
size_t offset; | ||
if (snrt_is_dm_core()) { | ||
size = n_samples_per_cluster * n_features * sizeof(double); | ||
offset = snrt_cluster_idx() * size; | ||
snrt_dma_start_1d((void*)local_samples, (void*)samples + offset, size); | ||
size = n_clusters * n_features * sizeof(double); | ||
snrt_dma_start_1d((void*)local_centroids, (void*)centroids, size); | ||
snrt_dma_wait_all(); | ||
} | ||
|
||
snrt_cluster_hw_barrier(); | ||
|
||
// Iterations of Lloyd's K-means algorithm | ||
for (uint32_t iter_idx = 0; iter_idx < n_iter; iter_idx++) { | ||
// Distribute work across compute cores in a cluster | ||
uint32_t n_samples_per_core; | ||
uint32_t start_sample_idx; | ||
uint32_t end_sample_idx; | ||
if (snrt_is_compute_core()) { | ||
n_samples_per_core = | ||
n_samples_per_cluster / snrt_cluster_compute_core_num(); | ||
start_sample_idx = snrt_cluster_core_idx() * n_samples_per_core; | ||
end_sample_idx = start_sample_idx + n_samples_per_core; | ||
|
||
// Assignment step | ||
for (uint32_t centroid_idx = 0; centroid_idx < n_clusters; | ||
centroid_idx++) { | ||
partial_membership_cnt[centroid_idx] = 0; | ||
} | ||
snrt_fpu_fence(); | ||
for (uint32_t sample_idx = start_sample_idx; | ||
sample_idx < end_sample_idx; sample_idx++) { | ||
double min_dist = INFINITY; | ||
membership[sample_idx] = 0; | ||
|
||
for (uint32_t centroid_idx = 0; centroid_idx < n_clusters; | ||
centroid_idx++) { | ||
double dist = euclidean_distance_squared( | ||
n_features, &local_samples[sample_idx * n_features], | ||
&local_centroids[centroid_idx * n_features]); | ||
if (dist < min_dist) { | ||
min_dist = dist; | ||
membership[sample_idx] = centroid_idx; | ||
} | ||
} | ||
partial_membership_cnt[membership[sample_idx]]++; | ||
} | ||
} | ||
|
||
snrt_global_barrier(); | ||
|
||
if (snrt_is_compute_core()) { | ||
// Update step | ||
for (uint32_t centroid_idx = 0; centroid_idx < n_clusters; | ||
centroid_idx++) { | ||
for (uint32_t feature_idx = 0; feature_idx < n_features; | ||
feature_idx++) { | ||
partial_centroids[centroid_idx * n_features + feature_idx] = | ||
0; | ||
} | ||
} | ||
snrt_fpu_fence(); | ||
for (uint32_t sample_idx = start_sample_idx; | ||
sample_idx < end_sample_idx; sample_idx++) { | ||
for (uint32_t feature_idx = 0; feature_idx < n_features; | ||
feature_idx++) { | ||
partial_centroids[membership[sample_idx] * n_features + | ||
feature_idx] += | ||
local_samples[sample_idx * n_features + feature_idx]; | ||
} | ||
} | ||
if (snrt_cluster_core_idx() == 0) { | ||
// Intra-cluster reduction | ||
for (uint32_t core_idx = 1; | ||
core_idx < snrt_cluster_compute_core_num(); core_idx++) { | ||
// Pointers to variables of the other core | ||
uint32_t* remote_partial_membership_cnt = | ||
partial_membership_cnt + core_idx * n_clusters; | ||
double* remote_partial_centroids = | ||
partial_centroids + core_idx * n_clusters * n_features; | ||
for (uint32_t centroid_idx = 0; centroid_idx < n_clusters; | ||
centroid_idx++) { | ||
// Accumulate membership counters | ||
partial_membership_cnt[centroid_idx] += | ||
remote_partial_membership_cnt[centroid_idx]; | ||
// Accumulate centroid features | ||
for (uint32_t feature_idx = 0; feature_idx < n_features; | ||
feature_idx++) { | ||
partial_centroids[centroid_idx * n_features + | ||
feature_idx] += | ||
remote_partial_centroids[centroid_idx * | ||
n_features + | ||
feature_idx]; | ||
} | ||
} | ||
} | ||
snrt_inter_cluster_barrier(); | ||
if (snrt_cluster_idx() == 0) { | ||
// Inter-cluster reduction | ||
for (uint32_t cluster_idx = 1; | ||
cluster_idx < snrt_cluster_num(); cluster_idx++) { | ||
// Pointers to variables of remote clusters | ||
uint32_t* remote_partial_membership_cnt = | ||
(uint32_t*)snrt_remote_l1_ptr( | ||
partial_membership_cnt, 0, cluster_idx); | ||
double* remote_partial_centroids = | ||
(double*)snrt_remote_l1_ptr(partial_centroids, | ||
0, cluster_idx); | ||
for (uint32_t centroid_idx = 0; | ||
centroid_idx < n_clusters; centroid_idx++) { | ||
// Accumulate membership counters | ||
partial_membership_cnt[centroid_idx] += | ||
remote_partial_membership_cnt[centroid_idx]; | ||
// Accumulate centroid features | ||
for (uint32_t feature_idx = 0; | ||
feature_idx < n_features; feature_idx++) { | ||
final_centroids[centroid_idx * n_features + | ||
feature_idx] += | ||
remote_partial_centroids[centroid_idx * | ||
n_features + | ||
feature_idx]; | ||
} | ||
} | ||
} | ||
// Normalize | ||
for (uint32_t centroid_idx = 0; centroid_idx < n_clusters; | ||
centroid_idx++) { | ||
for (uint32_t feature_idx = 0; feature_idx < n_features; | ||
feature_idx++) { | ||
final_centroids[centroid_idx * n_features + | ||
feature_idx] /= | ||
partial_membership_cnt[centroid_idx]; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
snrt_global_barrier(); | ||
local_centroids = final_centroids; | ||
} | ||
|
||
snrt_cluster_hw_barrier(); | ||
|
||
// Transfer final centroids with DMA | ||
if (snrt_is_dm_core() && snrt_cluster_idx() == 0) { | ||
snrt_dma_start_1d((void*)centroids, (void*)final_centroids, size); | ||
snrt_dma_wait_all(); | ||
} | ||
} |
Oops, something went wrong.